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ABSTRACT 
 

 This paper presents an optimum workforce-size model which determines the minimum number of excess 
workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon.  The model is 
an extension of other existing dynamic programming models for manpower planning in the sense that it strikes a 
balance between overstaffing and understaffing at each stage of the computations. The model also considers a 
manpower planning system in which the employment level has upper and lower bounds. The employment level varies 
from one period to another while the cost incurred in each period depends only on recruitment size and the 
overstaffing cost from an earlier stage. A mathematical problem is formulated and solved to illustrate the model 
numerically.  
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1. INTRODUCTION  
 
 Dynamic programming is a mathematical technique which deals with the optimization of multistage decision 
problems. According to Gupta (2005), the originator of dynamic programming was Richard Bellman in 1952. Over the 
years dynamic programming has been applied to solve many real life problems such as resource allocation, capital 
budgeting, replacement of worn-out equipment and so on, Taha (2002), Mehlmann (1980), opined that in the last two 
decades a body of literature on dynamic programming has been developed to focus on manpower planning. 
Mehlmann (1980) developed optimal recruitment and transition strategies for manpower system using dynamic 
programming technique. Mehlmann (1980) remarked that dynamic programming models for solving manpower 
planning problem is centred on the importance of correct manning of each grade under preferred recruitment and 
transition patterns. 
 Taha (2002) developed a manpower planning model which was based on the determination of when 
employees should be hired or fired. Taha (2002) further stated that hiring and firing of employees should be exercised 
from time to time in manpower planning system to checkmate incidents of understaffing and overstaffing. Sterman 
(2000), developed a model which was centered on civil and military manpower planning using Markov chains to 
determine optimal workforce-size. Raghavendra (1991) and Ekoko (2006), applied Markov chain models to manpower 
planning with respect to promotion and recruitment factors. 
Zanakis and Maret (1981) formulated a Markovian goal programming model with a pre-emptive priorities and provided 
a more flexible and realistic tool for manpower planning problem. Price and Piskor (1972) formulated a goal 
programming model of manpower planning system for officers of the Canadian armed forces to reduce the weighted 
sum of money spent on their military. Rao (1990) developed a dynamic programming  model to determine optimal 
manpower recruitment policies using dynamic programming technique by forward recursive approach.  
 While Ogumeyo and Ekoko (2008) developed a manpower planning model to determine optimal recruitment 
policies using a dynamic programming technique involving a backward recursive approach. Hillier and Lieberman 
(2001) argued that the workforce size of every business organization is subject to seasonal fluctuation due to the fact 
that certain machine operators are difficult to train and at times not readily available for hire when they are needed. 
Hence, overstaffing is inevitable. 
 The major problem in manpower planning is how to strike a balance between having too many staff 
(overstaffing) and not having enough staff (understaffing) in a business organization. These two extremes 
(overstaffing and understaffing) both have negative effects on any business organization. While overstaffing leads to 
economic law of diminishing return, understaffing results in low productivity and decrease in revenue generation. 
Many research work in literature on manpower planning deals with minimization of manpower cost without addressing 
the problem of narrowing the gap between understaffing and overstaffing. 
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 The model presented in this paper establishes a recruitment schedule for a category of workers during the 
next T time periods, in which understaffing is not allowed. The schedule seeks to minimize the total recruitment and 
overstaffing cost subject to the restriction that it meets the entire demand requirement on time. 
 
2. FORMULATION OF THE OPTIMUM WORKFORCE-SIZE MODEL 
 In formulating the optimum workforce-size model, the following assumptions are being considered as 
necessary conditions. 

a. Each period required workforce-size must be entirely satisfied on time in order to avert understaffing. 
b. The required workforce-size varies from period to period due to seasonal fluctuation 
c. The initial workforce-size is known and fixed. 

d. The overstaffing level must be zero at the end of period T, (that is, Ti  = 0) 

 
Mathematical Notations 

 The following mathematical notations are used in the formulation of the model 

tx  = workforce-size recruited in period t 

ti  = Overstaffing level at the end of period t. 

1−ti  = overstaffing level from an earlier period t. 

tt xi +−1
= Total number of staff available to meet future manpower demand in period t. 

td  = fixed required workforce-size in period t. 

),( ixCt = Cost of recruiting x = workforce-size and having i quantity of overstaffing employees in period t. 

)(ixt  = a recruitment level yielding )(if t  

)(if t  = minimum policy cost when the overstaffing quantity is  

at level i  with  t  more periods to go. 

From the above assumption stated in (d), management desires a recruitment policy in which the level of overstaffing is 
zero at the end of period  

0, =TiT  . . . . . . . . .        . . . (1) 

Each period workforce-size requirement must be entirely satisfied on time in order to avert understaffing, that is 
 
 
        = 
 
 
 
 
The above statement could be mathematically expressed as: 

tttt dxii −+= −1 . . . . . . . . . . (2) 

Rearranging the terms in equation (2) we have 

tttt dixi =−+−1  . . . . . . . . . . (3) 

Ttfor ...3,2,1,0= . 

where 
oi  is a specified level of initial overstaffing at the beginning of the planning horizon. 

Since overstaffing at the end of the horizon is zero by the assumption of the model, 

)()( ixif tt = implies that 

0)0( =of , for 0=t  . . . . . . . . . (4) 

This model required some constraints to be impose on the policy variables ttt ianddx , . This constraints 

are: 
i. We restrict recruitment to be integer valued, that is, no part-time workers are recruited, hence 

...3,2,1,0=tx for each period t. also 
Tt dddd ...,, 21=  , for ...3,2,1,0=t  

ii. Each period’s overstaffing from an earlier stage and the recruitment workforce-size at the present stage 
must always be large enough to make overstaffing quantity at the end of period t nonnegative value. That 

is, ,...2,1,0=ti at each period for Tt ...3,2,1= . 

Overstaffing at the  

end of period t 

Overstaffing from an earlier stage 

plus workforce-size recruited in 

period t less required  

workforce-size in period t. 



 

 

Remark 

 The relationship in equation (3) ensures that overstaffing from an earlier period plus recruitment in period t  is 
sufficient to meet manpower requirement in period t . 

When 1=t , the overstaffing quantity i  from an earlier stage can be any integer amount between the limits of 0 and 

1d ; but regardless of the specific level, the recruitment size must be id −1  so that all of the final period’s manpower 

requirement is met. It follows then that 

)0,()( 111 idCif −= , for 1,,,1,0 di = . . . . .  . . (5) 

Next, we consider 2=t  From the mathematical notation in this model, the overstaffing quantity is designated by i and 

the recruitment level by ,x hence the associated cost is 

)(),( 2122 dxifdxixC −++−+ . . . . . . . . (6) 

where the quantity 
2dxi −+  is simply the overstaffing quantity at the end of the period. The value for i can be any 

integer amount between o and 
21 dd + ;  if it exceeds 

21 dd + , then equation (1)  is not satisfied, since end-of-horizon 

overstaffing will be positive. Given i, the integer value of x must be at least as large as id −2 , in order to meet the 

period’s manpower requirement, but not larger than idd −+ 21  since overstaffing quantity must be o at the end of the 

period. An optimal recruitment quantity x is one that minimizes the above sum in (b). The value of 2=t  can be 

computed thus: 

 (i)f 2  = minimum  [ ])(),( 2122 dxifdxixC −++−+  

where 
21...,1,0 ddi +=  and the minimization is over only nonnegative integer values x in the range 

i- d d   x  i - d 212 +≤≤   

For 3 t = , we have 

[ ])(),()( 32333 dxifdxixCMinimumif
X

−++−+=  

With x in the range idddxid −++≤≤− 3213  

The general recursion is written as  

[ ])(),()( 1 tttt
X

t dxifdxixCMinimumif −++−+= − . . . . . (7) 

For Tt ,...2,1=  

Where 
tddi ++= ......1,0 1  and the minimization is over only nonnegative integer values x in the range 

121 ... −+++≤≤− tt dddxid  

We observe that by letting overstaffing quantity i be the state variable, the only independent decision variable in 

the recursion (6) is x, since overstaffing at the end of the period is simply )( tdxi −+ . We also observe that since )0(0f  

and )(1 if  are easily computed in (4) and (5), we can in turn calculate )0(2f , 

),()...,1( 2122 ddff + then ),()...,0( 32133 dddff ++ continuing for successively larger values of t, eventually to 

)...()...,1(),0( 121111 −−−− ++ TTTT dddfff  and finally to )( 0ifT . 

To find an optimum recruitment schedule, we then check what recruitment level )( 0ixT  yielded the value for 

)( 0ifT ; this is an optimal decision at the start of the horizon. At the next stage, overstaffing quantity from an earlier 

stage will be 
TT dixi −+ )( 00
. Then find a recruitment level that yields the value for ( )ToToT dixif −+− )(1  and so 

on. 
 
The Dynamic Programming Algorithm For The Model 

The dynamic programming algorithm for the optimal recruitment schedule can be summarized as follows: 
Step 1: First Stage computation, 

Compute 





==

=

0,0)0(

)()(

0 tforf

ifix tt
 

Step 2 for 1=t , compute  
1111 ,...2,1,0),()( diforidCif =−=  
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Step 3. for 2=t , compute { })(),(min)( 21222 dxifdxixCif −++−+=  

Where 1,1,0 21221 −+≤≤−+−= ddxidandddi  

Step 4 for ,...,2,1 Tt =  compute { })(),(min)( 1 ttttt dxifdxixCif −++−+= −  

Where 
12111 .........,1,0 −− +++≤≤+++−= titt dddxdanddddi  

 
3. NUMERICAL ILLUSTRATION 

In an establishment, the minimum number of employees d  required at each stage of a particular project is 5 and the 

fixed recruitment cost )( txC  for recruiting X -employees in t periods is said to be known. These known values are  

38)6(,35)5(32)4(29)3(26)2(,23)1(,0)(5......2,1 ========= CCCCCCoCanddd Tt
 

Use the dynamic programming algorithm in section 2 above to determine the optimum recruitment schedule for a 
period of six months in order to minimize overstaffing cost through out the periods. 
 
Solution 
Since the maximum estimated number of employees at the end of the planned period is 6, the establishment cannot 
recruit more than 6 employees and cannot retain more than 5 excess workers at the end of any period. 

Hence 5...2,1,06,...2,1,0 == tt iandx  for all periods. 

Using the step 1 of the algorithm for t = 1, 

5,......1,0
5)(

)5()(

1

1 =




−=

−=
ifor

iix

iCif
 

To ensure that the manpower requirement is met and the number of excess workers at the end of the horizon is zero. 

Thus, the value of )(1 if is given in the table 1 below 

 

  Table 1: Initial Recruitment Cost for 1=t  

 i )(1 ix  )(1 if  
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1 
2 
3 
4 
5 

5 
4 
3 
2 
1 
0 

35 
32 
29 
26 
23 
0 

 

 For 2=t  

Using the general recursion  

),5()5(1)()( 12 −++−++= xifxixCif  the value of )(2 if  is computed in Table 2.  There are 6 

rows and one for each feasible value of i. Several of the possibilities are blocked out. The first entry in each column x  

is the value )(xC , the second entry is the cost of retaining excess workers 1=h  times the number of excess 

workers. In the example, 5=i  and 0=x , hence overstaffing level is zero. And o appears in the second term in sum 

for this case. When 3=i  and 1=x , then overstaffing level is 1. Finally, the third term is the value of )3(1 −+ xif  

calculated from an earlier stage. 
 
 
 
 
 
 
 
 
 
 



 

 

Table 2: ),5()5(1)()( 12 −++−++= xifxixCif  

x  
i 

0 1 2 3 4 5 6 )(2 ix  )(2 if  

0      35+0+35 38+1+32 5 70 

1     32+0+35 35+1+32 38+2+29 4 67 

2    29+0+35 32+1+32 35+2+29 38+3+26 3 64 

3   26+0+35 29+1+32 32+2+29 35+3+26 38+4+23 2 61 

4  23+0+35 26+1+32 29+2+29 32+3+26 35+4+23  1 58 

5 0+0+35 23+1+35 26+2+29 29+3+29 32+4+23 35+5+0  0 35 

 

Thus, when 1=i , with two periods left to go, the best recruitment level is 5, which yields a cost of 26 for these two 

periods. Any other value for x  is more costly. 

Similarly, the calculations for )(3 if  are shown in table 3 below 

 Table 3: ),5()5(1)()( 23 −++−++= xifxixCif  

x  
i 

0 1 2 3 4 5 6 )(3 ix  )(3 if  

0      35+0+70 38+1+67 5 106 

1     32+0+70 35+1+67 38+2+64 4 102 

2    29+0+70 32+1+67 35+2+64 38+3+61 3 99 

3   26+0+70 29+1+67 32+2+64 32+3+61 32+4+58 2 96 

4  23+0+70 26+1+67 29+2+64 32+3+61 35+4+58 38+5+55 1 93 

5 0+0+70 23+1+67 26+2+64 29+3+61 32+4+58 35+5+55  0 70 

Here )5(1)( −++ xixC is the first term and )5(2 −+ xif is the second. 

Following the same procedure, the remaining values of )(if t , for t = 4, 5, 6 are summarized in table 4. 

 

 Table 4: SUMMARY OF COMPUTATION FOR 6..............2,1=t  

 1=t  2=t  3=t  4=t  5=t  6=t  

i )(1 ix  )(1 if  )(2 ix  )(2 if  )(3 ix  )(3 if  )(4 ix  )(4 if  )(5 ix  )(5 if  )(6 ix  )(6 if  

0 5 35 5 70 5 106 5,6 141 5 176 5 211 

1 4 32 4 67 4 102 4 138 4 173 4 208 

2 3 29 3 64 3 99 3,4 135 3 170 3 205 

3 2 26 2 61 2 96 2,3 132 2 167 2 202 

4 1 23 1 58 1 93 1,2 129 1 164 1 199 

5 0 0 0 35 0 70 0 106 0 141 0 176 

 
4. ANALYSIS OF RESULTS 

The tabulated numerical results needed to obtain optimal recruitment policy provide information about the 
model’s parameters such as the length of the planning horizon and the level of overstaffing at the end of each period t. 

Since each period in the model represents a month and that the first period is January. We want to know the 
optimal monthly figures change as the horizon T increases, and in particular, what happens to January recruitment. 
This leads to the next table, (Table 5) under the assumption that the overstaffing level at the beginning of January is o 
based on Table 4. 
 
  Table 5: Recruitment Schedule Table 

Planning 
Horizon T 

Jan Feb Mar April May June Cost 

1 5      35 

2 5 5     70 

3 4 6 0    106 

4 5 5 0 0   141 

5 4 6 5 5 0  176 

6 5 6 0 4 2 0 211 

 
Table 5 is constructed as follows. 

When the planning horizon 1=t , January recruitment 5)0(1 =x  is found from Table 4, first row under 1=t . When 

the planning horizon 2=t , January recruitment 5)0(2 =x  is found from first row in Table 4 under 1=t , since in 
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January there are two periods remaining until the end of horizon. Then February’s entering overstaffing is o, and so 

February recruitment is 5)0(1 =x . 

Skipping ahead to the case 6=t , we first determine January recruitment 5)0(6 =x  from the first row of 

Table 4 under 6=t  since now in January there are six periods remaining until the end of the horizon. Consequently 

overstaffing entering February is )450(1 −+=−+= dxi and February recruitment is 5)(5 =ix , which we find in 

Table 4 for 5=t  with the new entering overstaffing 1=i  (in February there are five periods remaining until the end 

of the horizon). This in turn means that overstaffing entering March will be )555(5 −+=−+= dxi , so that March 

recruitment is 0)5(4 =x  as shown in Table 4. The same line of reasoning establishes that April recruitment 

5)0(3 =x , since t = 3 with entering overstaffing of )505(0 −+=−+= dxi . With the April decision given, 

overstaffing in May is 1450 =−+ , so that May recruitment is )2(,4)1(2 == tx . Therefore, June recruitment 

2)3(1 =x  is optimal since entering overstaffing is 4563 =−+  with 1=t . Thus the minimum total recruitment cost 

when 6=t  is 211  which appeared as )0(6f  in Table 4. 

 
5. CONCLUSION 

The type of manpower planning problem treated in this paper is different from the common type of manpower 
planning problems that seeks total minimum recruitment cost without first of all determining the optimum recruitment 
schedules in each periods of planning horizon. From the illustrated numerical examples, we observe that the model 
presented in this paper indicate whether there should be overstaffing or not at each stage. Hence, the overstaffing 
level at the end of the planning horizon is zero and the minimum total recruitment cost is 211 which could be in 1000s 
of Naira value. 
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