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ABSTRACT 

 

 In this paper, the solution to semi-linear hyperbolic systems of the form 

),,(),(),(),( utxfutxcutxButxA xt =++ in ),0( ∞Ωx  with )()0,( xxu φ=  is given. We apply this solution 

approached to establish the solution representation for any isentropic fluid flow.  
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1.0 INTRODUCTION  
 
 Cauchy problems arose naturally from physical phenomena and are of great interest. Different scholars like 
Lee-Datsin and Yu-wen Tzu (1981), Lagan (1976), Kong and Zhang (1996) had put forward various approaches in 
order to obtain a better result, by relaxing certain restrictions encountered in earlier results. In all, the characteristics 
concept appears to be the best and accepted method.  
Nevertheless, the work is not complete given the varying physical principles where these Cauchy problems can be 
applied. The motion of compressible fluids offers instructive and significant illustrations of these characteristic 
concepts. Various forms expressing their flow exist depending on the space and media, whether in two dimensional 
space or spherically symmetric flow.  
 
We have as an example the equations  

  )1.1(
2

x

u
uu txx

ρ
ρρρ −=++  

  )2.1(02 =++ xtx cuuu ρρρ  

Moreso, considering Gas dynamics, either in Lagrangian coordinates or Eulerian coordinates, we have cases where 
the spatial variables will represent fixed points in space and in another instance, fixed particles.(Courant and 
Hilbert(1962),Michael and Robert(1993)). Thus, researches are inconclusive regarding any equation which may 
likely vary or be used to represent different phenomena like in water waves. In our earlier publication (Ndiyo 2005), we 
gave estimate solution to semi-linear hyperbolic systems in a generalized (weak) sense. In this paper, we consider in 
its generality the Cauchy problem of second order semi-linear hyperbolic equation of the form  

).(),,(),(),(),(),(),( 31utxFutxEutxDutxcutxB2utxA xtxxtxtt =++++
 

)4.1()()0,(),()0,( xxuxxu t ψφ ==
   

We reduced equation 1.3 – 1.4 into a first order system and obtained its eigenvalues and left eigenvectors, from which 
we established its solution representation.  We then illustrate this solution using an isentropic fluid flow equation.  
 
2.0 System of First Order and Solution Representation  
 

 Given the equation 1.3 – 1.4, let ),( txp  be tu  and xutxq =),( . We differentiate and substitute in 1.3 to 

obtain  

 ).(),,(),(),(),(),(),(),( 12utxFqtxEptxDqtxCqtxBptxBptxA xtxt =+++++  

and  

    )2.2(0=− xt pq  

by the continuity of mixed derivatives.  
Equations (2.1) and (2.2) becomes a system written  
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  )4.2()()0,(),()0,( xxqxxp ψφ ==  

The matrix 
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k  is non-singular and for 0≠A  will have its inverse as 
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The system (2.3) and (2.4) is reduced to  fNvmVV xt =++  

where     
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The eigenvalues of the principal part ''m  will be  
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The resulting eigenvectors matrix which are functions of (x,t) is  
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The matrix m in a diagonalised form  

  =∧∧= − ,1SSm  diag ( )21 ,λλ  

makes the system to become  
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we have from (2.5).  
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Define     

( ) )7.2(
00

111

*

2

*

1

*

2

*

1 SSASSSS
BB

AA
Q xt

A
E

A
D

−−− −−







=








=  

we obtained the system of equations  
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  )()0,( 1 xSxr φ−=  and )9.2()()0,( 1 xSxh ψ−=
  
Equation 2.8 and 2.9 becomes system of characteristics equations for the Cauchy problem 1.3 – 1.4. Along each 

curves c1 and c2 corresponding to each eigenvalues 2,1, =iiλ  we get  
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The solution representations are expressed by the corresponding integral taken over the characteristic curves with 

respect to t for ξ≤≤ t0  thus;  
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we eliminate  ),( εxh  and ),( ξxr from each of the solution representation as applicable to obtain  
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It has been shown earlier by Ndiyo-Ukeje (2004) that these solutions r(x,t) and h(x,t) does exist and are unique within 
the domain of dependency of the solution.  
 
3.0 Application  

  
Consider the equations   

)1.3(0)( =+ xt uρρ  
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)2.3(0)()( 2 =++ xxt uu ρρρ  

where ρ  is the density and u the velocity of the fluid in the x-direction.  

The matrix form is  

     )3.3(
0

2

01
2 









−
=
















+

















xx

x

t

t

uuu

u

uu ρ
ρ

ρ
ρρ

ρ
 

represented as  

  FvBvA xt =+  

where A is non-singular since 0≠ρ  with inverse  
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Multiplying equation 3.3 by A
-1
, we obtain  
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having the eigenvalues as u== 21 λλ .which is a case of multiplicity of eigenvalues.  

The eigenvector matrix becomes  
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By writing the system in its diagonalised form, we get  
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Indicating the component form along the characteristic curves, where 

  0=
dt

dρ
 

making =ρ constant  

then  )7.3(),,( utx
dt

du x

ρ
ρ

−=  

From the solution representation, we have that 0≡Q from equation 2.7.  

Hence  

  )8.3(),,()0,(),(
0∫ −+=
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x duxxutxu ξξ
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Following the uniqueness theorem criteria by Lagan (1976),this solution does exist and it is unique if the integrand is 
Lipschitz continuous with respect to u.  
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