
  
DOI: http://dx.doi.org/10.4314/gjmas.v12i1.1 

 
GLOBAL JOURNAL OF MATHEMATICAL SCIENCES VOL 11, NO. 1 & 2, 2012: 1-14  
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA. ISSN 1596-6208 

www.globaljournalseries.com; Info@globaljournalseries.com 
A MATHEMATICAL MODEL FOR ATTENUATING THE SPREAD OF 
DIABETES AND ITS MANAGEMENT IN A POPULATION 

 
IBRAHIM ISA ADAMU, YUSUF HARUNA AND E. J. D. GARBA 

      
ABSTRACT 

 
 We study the dynamics of diabetes in a population based on the etiology of the disease. In carrying out the 
study, we proposed that; a population generate non-diabetic non – susceptible sub-population, and a non-diabetic 
susceptible sub-population, the non-diabetic susceptible sub-population can further generate a population of diabetics 
without complication, who can later transit to a population with diabetic complications. Based on the etiology 
dynamics, we proposed control measures at the point of transition from the population to non-diabetic susceptible 
population, and at the point of transition from diabetes without complications to diabetes with complications. For this 
study, we intend to look at the control measure. In this regard, we proposed a mathematical model for the dynamics of 
diabetes by incorporating a control parameter h, so as to investigate how to control diabetes in a population. The 
result of the study suggested that; we need to control the incidence of diabetes, I(t), and improve the control measure, 
h, for transition from diabetes without complication to diabetes with complication. Thus entailing going further in 
research to; Look into the dynamics of the genetics of transmission of the diabetic gene, to investigate how to reduce 
the spread (and hence the incidence I(t)) of diabetes, and to also look into the influence of the control factor h, on the 
dynamics of glucose metabolism, this will give an insight on how to manage diabetic patients. 
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INTRODUCTION 
 
 Diabetes mellitus is a recognized consequence of hereditary haemochromatosis, David et al (2003). Genomic 
wide scans for linkage have reported a number of chromosomal regions that may harbor genes involved in type II 
diabetes, with the most promising, replicating findings on chromosomes 1q21-q24, 2q37, 12q24 and chromosome 20; 
Florence et al; (2003). Type I diabetes develops in individuals who are genetically susceptible; Janne et al (2004). In 
genetic epidemiology, population-based disease registers are commonly used to collect incidence and/or genotype 
data or other risk factor information concerning affected subjects and their relatives or a whole population, Janne 
(2008).  
 The incidence and prevalence of diabetes are increasing all over the world; complications of diabetes 
constitute a burden for the individuals and the whole society. It is now commonly admitted that diabetes is sweeping 
the globe as a silent epidemic largely contributing to the growing burden of non-communicable diseases and mainly 
encouraged by decreasing levels of activity and increasing prevalence of obesity, Bouteyab et al (2004). This trend of 
incidence & prevalence in a population, despite medical intervention, is a case for serious concern. 
 
Accordingly experts suggested that the dynamics of incidence & prevalence of diabetes in a population depends on; 

1) The dynamics of the natural history of the disease in a population (Bouteyab et al 2004). 
2) The dynamics of diabetes gene frequency in a population (Masatoshi Nei, 2006).  

 To understand and model the above dynamics, we need to know the natural history dynamics of diabetes in a 
 population.  
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Description of the Natural History Dynamics 
Bouteyab et al, (2004) schematically described the natural history dynamics of diabetes in a population as follows; 

 
Let deathnaturalofrate=µ  

,onscomplicatidevelopingofrate=λ

onscomplicatiwithoutdiabetesofincidencethetI
disabilitydevelopingofrate

onscomplicatifromdeathofrate
onscomplicatifromeryreofrate

=
=
=
=

)(

cov

υ
δ
γ

 

 

Then, the natural history dynamics is as follows (With notations as defined above).  
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Fig. 1: Schematic model for the dynamics of diabetic population(Bouteyab et al) 

 

On the basis of the above schematic model, Bouteyab et al (2004) developed the following  mathematical model that 

describes the dynamics of the diabetic population;  

 

                    )()()(, tCtDtNWhere +=+++= δυµγθ   
 

Using the above idea of the dynamics of the natural history of a diabetic population, we want to model the dynamics of 

diabetes in a population by incorporating control parameters, so as to investigate how to manage diabetic patients, 

and to regulate the  spread (and thus the incidence) of diabetes in a population. For this purpose, we decomposed a 

population into; susceptible sub-population and Non- susceptible sub-population, and introduced control measures at 

two stages of the dynamics of diabetes as follows: 

1. Control measure at the stage of diabetes without complication, to inhibit transition from diabetes without 

 Complication to diabetes with complication in a population 

2. Control measure at the pre susceptible stage, to reduce or inhibit the transmission of the diabetic gene, from 
 generation to generation 
 The dynamics of the subpopulations are as follows; 
 
Susceptible Sub-population:  
A member of this sub-population can;  
-  Move to the state of diabetic without complications (State I), and then   develop (move to the state with) 
complications (State II) with time. 
 
Maintaining the notations used by Bouteyab et al (2004) and introducing a control parameter that (supposed to) 
inhibits transition to diabetes with complications denoted by “h”, we have the following description of the dynamics.  
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State I: The number of diabetics without complications D(t) depletes by &)(tDµ )(tDλ  as a result of natural death 
and transition to state of  diabetes with complications respectively, and increases by hD(t), )(&)( tItCγ  as a result of; 
inhibitory control measure, recovery from complications, and incidence of diabetes without complications respectively.  
State II: The number of diabetics with complications C(t) depletes by ),(tCµ  ),(tCυ &)(tCδ )(tCγ as a result of 
natural death, death from complications, severe disability and  recovery from complications, and increases by )(tDλ  
as a result of developing complications from D(t). This gives the following schematic diagram of the natural history 
dynamics of the diabetic sub-population. 
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Fig. 2. Modified schematic model for the dynamics of diabetic population 

 
Non-susceptible subpopulation: 
A non susceptible person will be non-diabetic with the following dynamics 
 
Note: Susceptible means posses the diabetic gene. 
 
ü The number of non-diabetic & non susceptible depletes as a result of natural death, and recharged from  the 

 parent population. 

For this sub-population, the schematic representation of the dynamics, is as follows; 

 
                                                                                       µ    

                                                                                                                                                                                                           

 
Fig. 3: Schematic model for the dynamics of non- susceptible sub-population 
 

 Fusing the two schematic models of fig.2 & fig.3, and introducing diabetic gene spread inhibition parameter 

denoted by ε, we obtained the schematic diagram of the dynamics of any given population with respect to diabetes as 

follows; 
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Fig. 4: Our schematic Model for the dynamics of diabetic population 
 
In this work we are going to develop equations that describe the dynamics of diabetes in a population that 
incorporates the inhibitory control parameter, h, to investigate how it can play a role in retarding transition from 
diabetes without complications to diabetes with complications.  
 
MODELING 
Methodology 
Here we state assumptions, notations, parameters, and model development  
 
Assumptions 
v Underlying population is large and finite 
v Individuals are assumed to have no complications at the point of  first diagnosis at any time interval from the 
 start of the screening 
v Probability (λ) of a diabetic person developing complications is assumed to be constant.   

 
Notations 
The following notations are used; 
 I(t)  = incidence of diabetes without complications.  
 D(t)  = Number of diabetics without complications 
 C(t) = Number of diabetics with complications 
 N(t) = D(t) + C(t) is the total population of diabetics. 
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Parameters: 
   µ    = Natural mortality rate 
    d = Denotes the level of dieting in terms of calorie intake 
   λ   = Rate at which diabetic person develop complications 
    γ  = Rate at which complications are cured 
     h = Rate at which transition to diabetic with complications state is inhibited, 

   υ  = Rate at which diabetic patients with complications becomes severely      
   disabled. 

    δ  = Mortality rate due to complications. 
 δυµγθ +++=   
    
Developing Quations 
In this work, we estimate “h” as  , where “ex” is the amount calories burnt as a result  of physical  exercise, and 
“d” is the level of dietary calorie intake. 
 

Now, looking at the schematic diagram of the dynamics of the susceptible sub-population in fig. 4, the equations 

governing the rate of changes of C(t) & D(t) are as follows; 

 
System (2) is the required system of equations that governs the dynamics of the susceptible sub-population depicted 
by the schematic diagram in fig 4. 
 
Preliminary Result 
 
Now looking at system (2) above, this describes 
(1) The dynamics of the diabetic population, from diabetes without complication to diabetes with 

 complications & vice-versa in a diabetic population.  

First, let us study system (2), we shall solve the system analytically so as to gain an insight into the dynamics of the 

evolution of the diabetic population from diabetes without complications, to diabetes with complications & vice-versa 

for the following reason; 

Analytical solutions give room for sensitivity analysis which will give more insight into the dynamics of the diabetic 
population. 
 
Assuming a steady state for I(t)  i. e. I(t) = I(independent of time, t), and differentiating the first equation of system (2) 
with respect to t, we have; 

 
 

Using system (2) in equation (3), we have: 
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                    δυµγθ +++=Where   
 

From the first equation of system (2), we have 

 
Using (5) in (4) we have; 

     

 

 

 

Let   ( ) θµθλθγλβµλθσ −−−=+−+= hh &  

 

                

 
The auxiliary equation for the homogeneous part of (6) is 
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For the particular solution, we have, using method of undetermined coefficients.         
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Using (7) in (6), we have:
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From equation (5), we have; 
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Equation (12) now becomes 
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Therefore; equations (13) & (14) gives the number of diabetics with & without complications at any time t in a 

population. 

 

Sensitivity Analysis 
Consider the following system of O.D.E 
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We obtain the critical values as follows; 

Assuming a steady state for I(t) (i.e. I(t)=I(independent of time t)), then at critical points the above system reduces to; 
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Solving  for C(t) & D(t) from (15) & (16), we have: 
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This implies that, the solutions C(t) & D(t) to the O.D.Es  will revolve around the critical point values. 

 

LIMITING CASE BEHEAVIOUR  
 
Taking the limit of the solutions (13) & (14), i.e. 
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DISCUSSION ON LIMITING CASE BEHEAVIOUR 
The following discussion is based on the results of section 2.5 

 

1. From (i) of section 2.5;  rate of developing complications becomes very high (which may result from 

lack of optimal glucose control for patients without complications), when this occurs, the number of diabetics without 

complications D(t) depletes to zero (0) i rrespective of the incidence rate of diabetes. On the other hand, C(t) 

approaches ,  which depends only on  . This implies that; with very high 

(uncontrollable) rate of developing complications λ, the number of diabetics without complications, D(t), drops to 

zero(0), while the number of diabetics with complications C(t), stabilizes at  , this translate to the need to reduce 

, since reducing    will not have practical benefit. 

2. From (ii) of section 2.5;  recovery from complications becomes very high (which may result from 

intensive recovery programme for patients with complications), when this occurs, the number of diabetics without 

complications, D(t), approaches  ,  which depends only on . On the other hand C(t) varnishes to zero,  
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irrespective of the incidences . This implies that; with high rate of recovery from complications, , the number of 

diabetics with complications C(t) drops to zero, while the number of diabetics without complications D(t) stabilizes at   

, this translate to the need to regulate  h to bring down D(t) and C(t) respectively. 

3. From (iii) of section 2.5; Mortality rate due to complications becomes very high (which may result 

from lack of adequate control for complications), when this occurs, C(t) drops to zero, irrespective of the incidence, , 

while D(t) stabilizes at  , which depends only on .This implies that; with very high mortality rate due 

to complications, C(t) reduces to zero (0), while D(t) stabilizes at  , this translate to the need to regulate  and h 

to bring down D(t) and C(t) respectively. 

4. From (iv) of section 2.5;   Rate of developing disability becomes very high (which may result from 

deterioration of complications), when this occurs, C(t) drops to zero, while D(t) stabilizes at  which depends on 

 This implies that; with very high rate of disability, C(t) drops to zero, while D(t) stabilizes at  this 

translates to the need to regulate  to bring down D(t) and C(t) respectively. 

5. From (v) of section 2.5;  Rate of developing complications approaches zero, when this occurs, D(t) 

stabilizes at;  

  . This 

implies that; as the rate of developing complications approaches zero, D(t) depends on 

, while C(t) depends only on . In either case, this translates to the 

need to regulate D(t). 

6. From (vi) of section 2.5; ⇒→∞→ 0& λγ very high rate of  recovery from complications and varnishing 

rate of complications, when this occurs, D(t) stabilizes at 
h

I
−µ

, while C(t) approaches zero. This implies that, with 

aggressive and sustained recovery programme for patients with complications, and vanishing rate of developing 

complications, C(t) drops to zero, while D(t) stabilizes at  
h

I
−µ

, which depends on I, h & µ . This translates to the 

need for regulating I and h to bring down D(t) and C(t) respectively. 

7. From (vii) of section 2.5; ⇒→ 0γ Rate of recovery from complications approaches zero(0), when this occurs, 

C(t) approaches ∞ , while D(t) approaches 
µλ

ηη
+−

+−+−
h
ItCtC )exp()exp( 2211 . This implies that, with 

varnishing rate of rec overy (γ ) from complications, C(t) becomes too large (∞   ), this is because of injection by λ . 

On the other hand, D(t) stabilizes at 
µλ

ηη
+−

+−+−
h
ItCtC )exp()exp( 2211 , which depends on I, h&,,, δυλµ . 

This translates to the need for regulating I and h to bring down D(t) and C(t) respectively. 
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8) From (viii) of section 2.5; Rate of mortality due to complications vanishes, when this occurs, the number 
diabetics without complications D(t) and the number of diabetics with complications C(t) approaches: 
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respectively. This implies that, as the rate of mortality due to complications approaches zero, C(t) & D(t) reduces to 
the definite values shown above,    
      which are both functions of I,  ,h & ν.  This translates to the need to   

      regulate I ,  to bring down D(t) and C(t) respectively. 

9)  From (ix) of section 2.5;.  &  ⇒ Very high rate of recovery from complications, 

decreasing rate of developing complications & mortality due to complications. When this occurs, the number of 

diabetics without complications D(t) approaches ,  while the number of diabetics with complications drops to zero. 

This implies that, with very high recovery rate (which can be as a result of rigorous recovery programme for patients 

with complications), dereasning rate of developing complications and dereasinging mortality rate due to complications, 

C(t) drops to zero, while D(t) stabilizes at . This translates to the need f or regulating I and h to bring down D(t) and 

C(t) respectively. 

 

From the above discussion, the results suggest that; to Control diabetes, we need to reduce  the incidence of diabetes 
I and improve the rate of retardati on of transition to diabetes with complication. This will, respectively reduce cases of 
diabetes incidence and manage sufferers to extinction.  
 
CONCLUSSION 
 
From the above discussion, we conclude as follows; 
 The system of equations describing the dynamics of diabetes in the susceptible sub-population  suggest that; 
we need to control the incidence I and improve the rate of  inhibition, h for transition from diabetes without complication 
to diabetes with complication. 
This entails going further in research to; 

1. Look into the dynamics of the genetics of transmission of the diabetic gene, to investigate how to reduce  the 
 spread(and hence the incidence I) of diabetes   
2. Look into the effect of physical exercise and/or dieting on the dynamics of glucose metabolism, this will  give 
 an insight on how to manage diabetic patients. 
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