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ABSTRACT 

 
Various algorithm such as Doolittle, Crouts and Cholesky’s have been proposed to factor a square matrix into a 
product of  L and U matrices, that is, to find L and U such that A = LU; where L and U are lower and upper triangular 
matrices respectively. These methods are derived by writing the general forms of L and U and the unknown elements 
of  L and U are then formed by equating the corresponding entries in A and LU in a systematic way. This approach for 
computing L and U for larger values of n will involve many sum of products and will result in n2 equations for a matrix 
of order n. In this paper, we propose a straightforward method based on multipliers derived from modification of 
Gaussion elimination algorithm. 
 
KEY WORDS: Lower and Upper Triangular Matrices, Multipliers. 
 
INTRODUCTION 
 
Let A be a square matrix of order n. An LU factorization or decomposition is a decomposition of the form: 

 
A = LU……………………………..      (1) 
 

 Where L and U are upper and lower triangular matrices (of the same size) respectively (Horn and Johnson, 
1985; Kreyszig, 1993; Morris, 1983; Conte, 1965). 
 The LU factorization is not unique if one only requires that L be lower triangular and U be upper triangular. It is 
unique if we assign fixed values to the diagonal elements of either L or U (Conte, 1965; Sastry, 1989; Olayi, 2000; 
Atkinson, 1993). 
 LU decomposition is used for solving system of linear equations, calculating matrix determinants and inverse. 
 
THEOREM 1 (EXISTENCE AND UNIQUENESS). 
 
The matrix 

 

A =        (2) 
 
admits an LU factorization if and only if all its principal minors are non singular, that is, if 
 

a11  0       0      0……   0   (3) 
 
(Conte, 1965; Sastry, 1989; Olayi, 2000). 
 

LU DECOMPOSITION ALGORITHMS 
 We now outline the various procedures or methods that have hitherto been used to factor a square matrix A 
into a product of L and U matrices. We assume in all the methods that no interchanges will be necessary. The 
methods we are going to examine involve writing the general forms of L and U and the unknown elements of L and U 
are then found by equating corresponding entries in A and LU in a systematic way. 
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DOOLITTLE ALGORITHM 
 In this algorithm, the lower triangular matrix has all diagonal elements equal to 1, whereas the upper triangular 

matrix U is of the general form. Thus, the elements of the matrices L = ( ) [ with main diagonal1, …, 1] and U = (uij) 

in this method are computed from (Schied, 1988): 

 
uij  = a1j    j= 1, 2, …n 
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CROUT’S ALGORITHM 
 In Crout’s algorithm, the matrix U has all diagonal elements equal to 1, whereas L has the general diagonal. 

Hence, the elements of the matrices  

L= ( ) and U = (uij) [with main diagonal 1,…, 1] are computed from: 
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CHOLESKY’S ALGORITHM 
 For a symmetric positive definite matrix A(A=AT, xTAx>0 x 0). We can choose U = LT, thus uij =  and 
(4) are simplified to (Kreyszig, 1993) 
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FACTORIZATION WITH MULTIPIERS 
 
Given an nxn matrix, 

 

A = aij =    ……………..   (7) 
 
We want to factor A into the form, A = LU 
 

With U =  ………………..  (8) 
 

And L   = …………………  (9) 
 

Recall the Gaussian elimination algorithm that for a matrix of order n, the elimination is performed in (n-1) steps, 
K=1,2…..n-1. In step K, the elements aij

(k) with i,j>k are transformed according to (Dahlquist and Bjorck; 1974): 
 

mik =   ...........................  (10) 
 

= - …………….........  (11) 
 
i=k+1, k+2,….n;             j=i, i+1,……n 
 
Where mik is called the multiplier. 
 

It has been shown by Dahlquist & Bjorck (1974), Scheid(1988) and Matthews(1987) that the elements in L are the 
multipliers and the matrix U the final triangular matrix obtained by Gaussian elimination. 
 

Hence, we can say that: 
mik =  
(10) and (11) can now be written as: 
 

 = …………………………………                 (12) 
 
aij

(k+1)
 = aij

(k) - akj
(k)  ………………………    (13) 

 
Also, observe that after triangularisation, (7) will take the form: 
 

U =  ………….  (14) 
 
 

So, we can let A = aij  in (7) equals aij
(1),  

That is, let A = aij = aij
(1)   ……………  (15) 
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Comparing (8) with (14), we can say that, 

aij
(1) = uij,      j = 1 to n   ……………  (16) 

we already know that, 

ii =1, i =1 to n    ………………  (17) 

 

Instead of writing i = k+1, k+2,….n; j=i, i+1,…n; we can write: 
i=2 to n for (12), since for k=1, this transformation begins from row 2 and i, j= 2 to n for (13) since for k=1, it 
begins from row 2 column 2. 
Also comparing (8) with (14) , we can say that: 
 aij

(i) = uij , i = 2,….n   ………………  (18) 

Combining (15), (16), (17), (12), (13) and (18) we now write an algorithm for factoring A into LU: 
 

Let A = aij = aij
(1) 

a1j
(1) = uij,  j=1to n 

ii = 1,  i = 1 to n 
For k=1,2 to n-1 

ik =    i>k, i = 2 to n 
aij

(k+1) = aij
(k) - likakj

(k) i,j>k, i,j = 2 to n: 
aij

(i) = uij  i, j = 2,…n 
U = (uij) 1≤ i, j ≤ n and L = (L ij) 1≤ i, j ≤ n 

 
APPLICATION (Stroud, 1996) 

We want to decompose  
 

A =  into A = LU, 
 
Which we know the result to be: 
 

L = ,                U =  
 
METHOD 1: USING MULTIPLIERS 
a11

(1) = 3, a12
(1) =2, a13

(1) = -1, a21
(1) = 2,  a22

(1) = -1, a23
(1) = 2 

a31
(1) = 1,  a32

(1) = - 3 , a33
(1) = -4. 

a1j
(1) =  u1j, j = 1 to n ⇒ 

a11
(1) = u11= 3,  a12

(1) = u12 = 2,  a13
(1)= u13 = -1 

l11 = 1, i =1 to n ⇒ 

l 11 = l22 =l33= 1 

For k = 1 to n-1, we have: 

K= 1,  i = 2, ⇒  l 21 =2/3 
K= 1,  i = 3, ⇒  l 31 =1/3 
K= 1,  i = 2, j=2 ⇒  a22

(2)
 =-7/3 

K= 1,  i = 2, j=3 ⇒  a23
(2)

 =8/3 
K= 1,  i = 3, j=2 ⇒  a32

(2)
 =-11/3 

K= 1,  i = 3  j=3, ⇒  a33
(2)

 =-11/3 
K= 2,  i = 3, ⇒  l32 =11/7 
K= 2,  i = 3 j=3, ⇒  a33

(3)
 =-55/7 
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Thus, 
a22

(2)= U22= -7/3,  a23
(2)= U23= 8/3,  a22

(3)= U33= -55/7, 
 

  L =     U =  
 
METHOD 2: USING DOOLITTLE ALGORITHM 
For the purpose of our comparison, we shall use Doolittle algorithm. 
We already know that, Doolittle algorithm(4) is obtained by writing the general forms of L and U, where L has all the 
diagonal elements equal to , whereas the upper triangular matrix U is of the general form and the unknown elements 
of L and U are then found by equating corresponding entries in A and LU in a systematic way. Thus, for: 

A =  
 
Let  l11 = l22 =  l 33 = 1 
 

LU =   
 

LU        =  
 
But A  =  LU  ⇒  U11= 3,  U12   =  2,   U13   =  -1 
 

 = 2 ,⇒ 3 = 2,  ⇒  = 2/3 
 

 = 1  ⇒3 = 1, ⇒  =1/3 
 

  ⇒4/3 +u22 =-1 
 ⇒ u22 =-1 - 4/3 = -7/3 
 

 = 2,   ⇒ -2/3 +U23 =2 
 ⇒ u23 =2 + 2/3 =  8/3 
 

 =-3,   ⇒ 1/3(2) +  =3 ⇒  =11/7 
 

             +  = -4 
 
1/3(-1) + 11/7(8/3) +  =-4 
 
-1/3 + 88/21 +  = -4 
 

 = -4 – 81/21 = -165/21 = -55/7 
 

Thus A = LU =   
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CONCLUSION 
 
 We have modified the Gaussian elimination algorithm and have developed a straightforward algorithm based 
on multipliers for factoring an n x n matrix A into the form A = LU, where L are the multipliers with ls on the diagonal 
and U is the upper triangular matrix. We have also observed that our proposed algorithm does not involve many sums 
of products as compared to the Dool ittle algorithm. 
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