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ABSTRACT 
 
 In this paper, forecast of one-dimensional integrated autoregressive bilinear is compared with forecast of 
generalized integrated autoregressive bilinear model. We describe the method for estimation of these models and the 
forecast. It is also pointed out that for this class of non-linear time series models; it is possible to obtain optimal 
forecast. The estimation technique is illustrated with respect to a time series, and the optimal forecast of these time 
series are calculated. A comparison of these forecasts is made using the two models under study. The mean square 
error for forecast in generalized integrated autoregressive bilinear model is smaller than the mean square error for 
forecast in one-dimensional integrated autoregressive bilinear model. Though the two models are adequate for 
forecast when compared with the real series but forecast with generalized integrated autoregressive bilinear model is 
more adequate.  
 
KEY WORDS: Optimal Forecast, Non-Linear Time Series Models, Bilinear Models, Estimation Technique, Mean 
 Square Error. 
 
INTRODUCTION 
 
 The bilinear time series models have attracted considerable attention during the last years. An overview of 
models and their application can be found in Subba Rao (1981), Pham and Tran (1981), Gabr and Subba Rao (1981), 
Rao et al. (1983), Liu (1992), Cathy (1997), Gonclaves et al. (2000), Shangodoyin and Ojo (2003), Wang and Wei 
(2004), Boonaick et al. (2005), Doukhan et al. (2006), Drost et al. (2007), Usoro and Omekara (2008) and Ojo( 2009). 
The bilinear modes studied by the above researchers could not achieve stationary for all nonlinear series. Ojo (2011) 
proposed one-dimensional integrated autoregressive bilinear time series model that could achieve stationary for all 
non linear time series. Also, Ojo and Shangodoyin (2010) proposed generalized integrated autoregressive bilinear 
time series model that could achieve stationary for all non linear time series.  
 Forecasting connote an attempt to see into the future. There are two words, which are used to denote 
numerical forecasting methods namely forecasting, and prediction. Forecasting is the process of estimation in 
unknown situations. Prediction is a similar, but more general term, and usually refers to estimation of time series, 
cross-sectional or longitudinal data. Forecasting is commonly used in discussion of time-series data. Therefore 
forecasting is a powerful useful instrument in planning and making a wise decision about future. As a result of feature 
of stationary for all non linear series in one dimensional and generalized integrated bilinear model we shall attempt to 
study optimal forecast using these two models and see the one that perform better. 
 
Generalized and One-Dimensional Integrated Autoregressive Bilinear Time Series Models 
 
 We define generalized integrated autoregressive bilinear time series model as follows: 

tltkt

r

k

s

l
klt

d
t eeXbXBXB ++∇= −−

= =
∑∑

1 1

)()( φψ , denoted as GBL (p, d, 0, r, s) 

where p
p BBBB φφφφ −−−= .......1)( 2

21  and 

  tstrtrsttdptdptt eeXbeXbXXX ++++++= −−−−−−+− ............. 111111 ψψ   (1) 

pφφ ,...,1  are the parameters of the autoregressive component; rsbb ,,.........11  are the parameters of the non-linear 
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 We define one-dimensional integrated autoregressive bilinear time series models as follows: 
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 pφφ ,...1  are the parameters of the autoregressive component;
 111 ,,......... rbb  are the parameters of the nonlinear 

component and d is the degree of consecutive differencing required to achieve stationary.  

Model Estimation 
  
 The estimation of the models are similar, we shall report the estimation of generalized type since 

smi ....,3,2,1=  for the generalized case include 1=im the one dimensional case. Suppose that tX  are generated 

by equation (1), the sequence of random deviates { }te  could be determined from the relation  
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To estimate the unknown parameters in equation (3), we make the following assumptions: 
(i) The errors { }te  are independent and identically distributed with mean zero and variance 2σ  with finite 
 kurtosis. 
(ii) The values of 1' <sψ  and 1' <sbkl  ensure that invertibility condition required of the bilinear process is 
 satisfied. For details see (Ojo and Shangodoyin, 2010). 

 Thus maximizing the likelihood function is equivalent to minimizing the function )(GQ , which is as follows: 

∑
=

=
n

mi
teGQ 2)( ,                               (4)       

with respect to the parameter  ),....,;,....,( 111
'

rsp BBG ψψ=  

Then the partial derivatives of Q(G) are given by 

i

t
n

mt
t

i dG
dee

dG
GdQ ∑

=

= 2)(
                    (i = 1, 2,…..,R)      (5) 

)(2)( 22

ji

t
n

mt
t

j

t

i

t
n

mt
t

ji dGdG
ede

dG
de

dG
dee

dGdG
GQd ∑∑

==

+=                                                    

where these partial derivatives of te  satisfy the recursive equations  
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=1,2,…,s), it follows that the second order derivatives with respect to iψ (i = 0, 1, 2, …, p) and iθ   (i = 0, 1, 2, …, q) 

are zero. For a given set of values }{ iψ and {Bij } one can evaluate the first and second order derivatives using the 
recursive equations 6, 7 and 10. 
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 where )(kG  is the set of estimates obtained at the kth stage of iteration.  The estimates obtained by the above 
iterative equations usually converge. For starting the iteration, we need to have good sets of initial values of the 
parameters. This is done by fitting the best subset of the linear part of the bi linear model. 
 
Predictive Performance of the Models 
 In order to compare the performance of the bilinear models, it is necessary that we should obtain the forecasts 
and these are obtained as follows: 

 Suppose {Xt} is a discrete time series and we wish to predict htX +0  given the semi-infinite realization 
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 Typically, we substitute the least squares estimates of these parameters, and then calculate the predictors. 
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RESULTS AND DISCUSSION 
 

To present the application of the model and its forecast, we will use a real time series dataset, the Wolfer 
sunspot. The scientists track solar cycle by counting sunspots – cool planet-sized areas on the Sun where intense 
magnetic loops poke through the star’s visible surface. We have used annual sunspot numbers for the years 1730-
1879, giving 150 observations.  
 
Generalized Integrated Autoregressive Model 
Fitted Model at t=150 

Xt = 0.412820Xt – 1 – 0.271125Xt – 2 – 0.270908Xt – 3 – 0.339150Xt – 5- 0.293320Xt – 7 + 0.000325Xt – 1et – 1 – 0.020870Xt – 

1et - 2- 0.002425Xt – 1et – 3 + 0.018075Xt – 2et – 1 + 0.009283Xt – 2et – 2 – 0.008691Xt – 2et – 3 – 0.019234Xt – 3et – 1 – 

0.007737Xt – 3et – 2 + et  

 
One-Dimensional Integrated Autoregressive Bilinear Time Series Model 
Fitted Model at t=150 

Xt  =0.412820Xt – 1  -  0.271125Xt – 2  -  0.270908Xt – 3 - 0.339150Xt - 5 – 0.293320Xt - 7 – 0.002709Xt – 1et - 1 -  0.006085Xt 

- 2et – 1 - 0.002411Xt - 3et – 1 -  0.009225Xt - 4et – 1 - 0.006196Xt – 5et – 1 + 0.002575Xt – 6et  - 1 - 0.021601Xt - 7et  - 1 + 

0.010533Xt – 8et  - 1 +  et 
 
 

Table 1: Residual variance and mean squares error for forecast (sunspot data) 

 

MODEL One-Dimensional Integrated 
Autoregressive Bilinear Model  

Generalized Integrated Autoregressive 
Bilinear Model  

2
eσ  

207.50 193.20 

MSEF 15.55 14.28 

 

 From Table 1, it is clear that the generalized integrated autoregressive bilinear time series model has smaller 
residual variance when compared with one-dimensional integrated autoregressive models. Also generalized 
integrated autoregressive bilinear time series model has the smaller mean squares error for the forecast when 
compared with one-dimensional integrated autoregressive time series models. And as a result the performance of 
generalized integrated autoregressive bilinear time series models is better when it is used for forecasting. 
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 Figure 1: Time Plot of Sunspot Data (Original Series) 

 

 

 Figure 2: Time Plot of Forecast using Generalized Integrated Autoregressive Bilinear Model 

 

 

 

 Figure 3: Time Plot of Forecast using One-Dimensional Integrated Autoregressive Bilinear Model 
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Figure 4: Time Plot of Forecast using Original Series and One-Dimensional Integrated Autoregressive Bilinear Model 

 

 

 

 

 Figure 5: Time Plot of Forecast using Original Series and Generalized Integrated Autoregressive Bilinear  
  Model 
 

 

 

 

 Figure 6: Time Plot of Forecast using Generalized and One-Dimensional Integrated Autoregressive Bilinear 
  Models 
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 Figure 7: Time Plot of Original Series and Forecast using Generalized and One-Dimensional Integrated  
  Autoregressive Bilinear Models 
 

 
Figure 1 shows the graph of original series. Figure 2 
shows graph of forecasts of generalized model while 
Figure 3 shows graph of forecast of one-dimensional 
model. Figures 4 and 5 compare graph of original series 
with graph of forecast of one-dimensional and 
generalized models while figure 5 compares graph of 
one-dimensional and generalized models. Figure 7 
compares graph of original series and graph of forecast 
of one-dimensional and generalized models together. 
 
CONCLUSION 
 
 Two bilinear time series models that were 
capable of achieving stationary for all non linear series 
were considered. These two models were used to 
forecast the future value having estimated their 
parameters. Generalized integrated autoregressive 
model outperformed one dimensional integrated 
autoregressive model after we have studied the residual 
variance attached to the two models. The mean square 
error for forecast for the models were studied and we 
found out that the mean square error attached to 
generalized bilinear model was smaller than one 
dimensional model. The two models were used to 
forecast. On the basis of the forecasting performance, 
generalized integrated autoregressive bilinear time 
series model formed a useful class of non-linear model 
for forecasting. 
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