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ABSTRACT 

Difference equations are derived for third order moments and cumulants for bilinear multiplicative seasonal ARlMA 
(O,d,O) x (I,D,l), time series model stcdizd by lwueze and Chikezie (2005). The third order~cm~llanf~structure are '' 

shown to be the same as the covariacce structure. The moments ( first, second and third .) and cumulants obtained 
z.: used for:- (i) determining uniquely the periodicity of the series, (ii) initial estimation of the model parameters, and 
(iii) determining uniquely the region where the parameters lie. The initial estimates are then used to obtain. least 
squares estimates of the parameters iteratively. . . -  
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1. INTRODUCTION 

Let Yt, t E Z and el, t E Z be two stochastic prpcesses defined on some probability space (0, F, P), where Z = { 
..., -1, 6, 1, ... ). For our purposes, el, t E ,Z 'taken co be a sequence of independent and. identically distributed. 
random variables with E( el ) = 0 and E( el2 ) = o -: co. Let Xt = ( 1-B )d ( I-BS )O Y,, where ( 1-B )d is the regular 
differencing to remove the stochastic trend ( if any ) in the series and ( I-B' )D is the seasonal differencing operator 
used when the mean of a realization shifts according to a seasonal pattern. 

Second order covariance analysis of the bilinear mult~plicative seasonal ARlMA (O,d,O) -x (1 ,D,I), time series 
model 

Xt = + be,, + yX,-,e,-, + el (1 1) 

h v e  been studied by lwueze and Chikezie (2005). The second order properties of (1.1) are similar to the linear time 
serier. equivalent, with y = 0. For the. stationary time series Xt, t E Z satisfying (111) and its linear equivalent, the 
autocovariances/autocorrelations are zero everywhere except at lggs s, 2s, 3s, ... In fact, they have similar second 
order covariance structure as that of ARIMA-(I ,d,l) ,  except that the non-zero autocovariances occur at multiples of lag 
s; which in turn are characterized into seven regions discussed in section 2. 

As has been noted in the literature ( see Subba Rao (1981), Akamanam (1983), lwueze (1989) ), second 
order col:ariance analysis is not sufficient to distinguish a linear model and a bilinear model. Higher order moments 
and cumulants are therefore required. 

The object of this paper is to derive the th.ird order cumulants of (1.1) and to show that it maintains the-known 
covariance structure at a specified plane. We will also investigate the use of the covariance structure and third order 
cumulant structure to determine the periodicity s and prc ~ i d e  initial estimates of the parameters. The initial estimates 
are then used to obtain least squares estimates of the parameters iteratively. 

2. SECOND ORDER MOMENTS: A REVIEW. 
lwueze and Chikezle ( 2 0 5 )  have obtained the following resultsfer (4 . I ) :  

1. 11 = E(Xt )  = oZy / ( l - a ) ,  l a / < I .  (2.1) 
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provided that a2 + o2 y2 < 1. 

I 
R(O), k = 0 

R(s), k = s 

9. R(k) = aa-' R(s), k = as, a = 1,2,3, .. . 

0, otherwise 

  he autocorrelation functions ( ac.fs ) arenharacterized.into seven regions ( see lwu&e and Chikyzie'(2005), . / 
; which are shown in.Table 1. 

Pk = R(k) R(0) 

[ 1 , k = 0  

Table 1: Behaviour of autocorrelations for model (1.1). 
I-- I 

- - { 

Ps, k = s 

aa" Pk, k = as a\ 1,2,3, ... 

0, otherwise 

I 7 .  a = -p, y + 0, such that a + 1 = 0. I Not white noise [ (a) ps > 0 for a > 0. p < 0 

3. a < 0, p > 0, y #  0, such that u + p < 0. 

4. a < 0, P < 0, Y + 0, such that a + p < 0. 

5. a > 0, < 0, y + 0, such that a + p < 0. 
I 

6. a > 0, p < 0, y # 0, such that a + p > 0. 

suchthata+p=Oandy+O, (b )p ,~Ofor  

a < 0, fl '  0 such that a + I) = 

0 and decays with alterna!ing s!y. 

p, < 0 and decays with alternating sign. 

p, < 0 and decays with alternating sbn. 

p, > 0 and all ;lon=zero ac,f's positive. i 
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3. THIRD ORDER MOMENTS AND CUMULANTS 

Let us assume that XI, t E Z is a real third order stationary process for which moments up to order 3 exists. By 
virture of the assumed third order stationarity, the third order moment 

depends only on k, and k2 for all admissible values of t, kl, and k2. 

The third order cumulant 

~ ( ~ 1 9 ~ 2 )  = E[(XI - P )  ( x , ,  - P )  ( ~ / - k ~  -P)I (3.2) 

, is identical to the third order moment about the mean. ~itdplifying (3.2), we obtain 

. , . . 

. . 
If the time series Xt, t E Z is a real valued stationary time series, the follqwing symmetric relations $3 

hold ( see Gabr (1988). Sesay and Subba Rao (1991), Oyet and lwueze (1993) ) It follows from (3.4)ihat p(kl,b) is 
completely specified over the entire plane by its values in any one of the six sectors shown i n  Figure 1. In view of the 
symmetry, we need to 

calculate cumulan'ts for positive lagionly. All we want to achieve in this paper is to distinguish betvieen the linear and ... 
bilinear forms of (1.1). It is sufficient for our purposes to calculate p(kl,k2). For kl > 0, k2 > 0 on the line kt = k2 of . 
Flgure 7: 

-In der&ing ~q ia t i on  (2.1) through (2.11), lwueze and Chikezie (2005) assumed that4he random variables el, t- 
E Z are Gaussian with E( et ) ='O, E( e: ) =' G~ i o o ,  so that E( el3 ) = 0, E( e: ) = 304, E( e: ) = 0 and E( e: ) = ' 
1%'. Alsoassumed is the fact that by expression (1.1), el, is independent of Xh, h < t. 

Based on these assumptions, one can verify that the following are true: ' - . .>  r-. 

, E( X, e,) ) = 3 d '. (3.5) 



E ( x ? ~ ? )  = o ~ E ( x ? ) -  + 6 . o 4 p ( =  a2p3  + 6 e 4 p  ' : ( 3 . 8 ) .  . 

. \, 
where p3 = E( X? ). 2 ,! 

In obtaining (3.10), we assumed that cx3 + 3 a2 a y2 < 1, and this is a sufficient condition for the existence of the third 
order moment of the time series Xt, t E Z satisfying (1 . I ) .  

N!w we obtain the third order cumulants ' Limiting our search40 the line kl=k2=k, k = 0. 1, 2. 3. .::or Figure 1. : 

we have from (3.3) that I . - 
... 

p(O,O) = E( xt3 ) - 3 p R(O) -'p3 (3.1 1) 

Computation of (3.12) is done by looking at s = 1, 2, 3, ..:. For want of space. & demonstrate the 60irtput;ltidns 
when s = 2. 

When s = 2, Equation (1.1) becomes. 

and 
2 

. Xt ~ 1 . t  = & Xt-2 Xt-k + p et.i xt.? + y &-2 .el-' XI.?. + et xbk2 (3.14) . 

Based on our assumptions and'previous results ( Equations (2.1) through (2.9), and (3.5) through (3.10) ), we obtain 
3 .  for: 



since a # 1 and R( l )  = 0 for s = 2. 

k = 2:. -- 

E ( x ~ x ~ . ~ ~ ) = ~ E ( x : )  +PE(x t2e t )  + y E ( X ? ~ , )  (3.17) 

E (x~x~ .~~ )  = ~ E ( x ~ - ~ x ~ - ~ ~ )  + Y~(~t,2el-2~t-32) = a ~ ( ~ t - 2 ~ , - 3 ~ )  + a2yp2 (3.19) b 

3 ~ ( ( 3 , 3 ) + p [ R ( O ) + 2 R ( 3 ) ] + p ~ = a [ ~ t ( l , l ) + p [ R ( O ) + 2 R ( l ) ] + ~ ? ]  

+ ( 1 -a cc [ R(O) + cc2 I 

3 p(3,3) = a p(1,l) = 0 - (3.20) 

since R(3) = a R( l )  = 0 for s = 2. 

k = 4: 

E ( x ~ x ~ . ~ ~ )  = ~ E ( x ~ - ~ x ~ - ~ ~ )  + Y~ (~ t . 2e t -2~ t -42 )  = ~ X E ( X ~ - ~ X ~ - ~ ~ )  + 02yp2 (3.21) 

a ~ ( 4 ~ 4 )  + p [ R(O) + 2 R(4) I + p3 = a [ ~ ( 2 ~ 2 )  + p [ + 2 R(2)I + 1 1 3  I 

+ ( 1 -a ) p [ H(O) + p2 1 

3 ~ ( 4 ~ 4 )  = a ~ ( 2 2 )  (3 22) 

Continuing, we obtain : p(5,5)+ 0; p(6,6) = a 1~(4,4) = a2 p(2,2),7f3,7) = 0; p(8,8) = a fi(6,6) = a3 p(2,2); and 

SO on. 

Generally, for all values of s 2 1, 

E(xt3) - 3 p R(0) - p3, k = 0 

+ 2 c2 y R(O), k =' s (3.23) 

p(s,s), k = as, a = 2 , 3 , 4  ,... 

0, otherwise. 
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We introduce a standardized third- order cumulant given by 
3 

'p(k,k) = pCk,k) p(0,O) 

( 0, otherwise 

- - 

{ 

From our analysis so far, we di.aw the following conclusions 

(1). For the linear multiplicative seasonal ARlMA (0,d.O) x (l,D,I), models, third order 

a + [ 2  a2 y R(0) / p(0,O) 1, k = s 

aa- I p(s,s), k = as, a = 2 , 3 , 4  ,... 

moments and cumulants are zero. 

(2). For bilinear mul!iplicative seasonal ARlMA (O,d,O) x (1 ,D,1), models, third order 

cum-ulant structure are similar to the covariance.Structure ( see computations for a 

simulated example in Table 2 ). This deviates from previous results obtained by 

Sesay and Subba Rao (1991) and Oyet and lwueze (1993). 

(3). The special characteristics of our derivations is that 

4. IDENTIFICATION AND INITIAL ESTIMATES 
Specifying the model (1 .l) means frnding the seasonal lag s and the estimates of the parameters a, P, y, and 

IS', the residual variance. All proposed methods of identification such as Box and Jenkins (1975) and many others, 
explort the use of pattern recognition and we have seen the presence of certain patterns In boV~ the covariance and 
cumulant structures. 

" We have derived the covariance and cumulant structures of (1.1) and have shown that the 
autocovarianceslautocorrelations and cumulantslstandardized cumulants are zero everywhere except at the multiples 
of the seasonal lag s. An estimate of the seasonal lag s can be obtained by computing the sampk 
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autocarrelation-and standardized cumulant of the process and chooslng as s the first lag at which the autoc~rrelation 
and standardized cumulant are non-zero. Now the following est~mates are necessary 

where 

% 

Simulations of Table 2 vividly illustrates the determination of s for n = 100 with a = 0.8, P = 0.4, y = 0.2.taking from 
3eglon 1 and et - N(0,l). Our simulations in other regions gave similar. results. The program used for simulation and 
?stlmation .w& written in Fortrann 77 by the authors, coupled with MINITAB software whlch was used to generate the 
-ando data 

TiteMitial estimate ot or, the autoregressive parameter is obtained from (3.26) by replacing theoreti& ~alues 
3y their s q l e  equiva1enJ.s. Using second order moments we obtaid 

e, = C \ / C ,  = r2\/r\ (4.8) 

~nile,,.using thethird order moments we obtain 

Simulations of Tables 3 and 4 illustrate the computations for n = 100 and n = 500 respectively with a = 0.8. P'= 0.4. y = 
2.2, et - N(0,l). 

Table 3: Sample estimates of first. m n d ,  third order moments and bmulants for (1.1) witti 

wi able 4: Sample estimates of first, second. third order moments and wmulants foi(1:l) with 
. u=,0.8.~=0.4.y=0.2,el-N(O,l).n=500. 

s Co 

1 1.0030 1 6.4_0_23 
0.97e7 6.0555 

5 1.8689 
4 1 1.0331 1 -7.3959 
6 1 0.9431 1 7.2767 

12 1 0.9019 1 6.4099 0.78 1 0.62 -a 

Cs 

5.6143 
5-2267 
6.9813 
6.5226 
6.2535 
5.4832 

CZS 

4.5275 

C(O.0) 

11.6951 

C(S.S) C(2s.2~) 1 M2 Mt 6, 1 6: 
- 10.7555 1 &_354!Y 1 7.4Si3 

4.C445 , 132726 
5.6041 ! 27.3553 
5.3274 [ 23.1467 
4.7511 1 4 4 E 5 1  
4.2913 1 19.1481 

65.5217 0.76 1 0.76 
17.4401 1-.2~66 i 7.2234 1 37.2251 
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We must note that when a = 0.8, P = 0 . 4 ~  = O.?, el - N(O,?), the thebretical momen's a-e - = ' 6000, 112 = 

8.3750, p3 = 51.9260, R(0) = 7.3750, R(s) = 6.5b00, F!(~s) = 5.2000, 11(0,0) = 28.8010, ~(S.SI = 2 5  m. p(2s,2s) = 
20:7926'. Tables 3 and 4 show that al and a2 given by .(3.8) and (3.9) respectively, provide inihal es!-cra!es of a that 
areclose to the trueltheoretical value. However, estimates for n = 500(  Table 4) show that a; = a? z a; 
indicating t h a  with large samples, initial estimates of a can be used as the true values. It is also clear from Tables 3 
and 4 that sample estimates of second order moments are closer to the true values than the sample estimates of third 
order moments are to their theoretical equivalents. Based on these observations, initial estimates of the parameters 
of (1.1) will be obtained using the first and second moments only. 

blaving determined s and initial estimate of a,  we now consider how to obtain the 'initial estimates of P, y and 
o' using the first and second moments. Solving Equations (2.1), (2.6) and (2.7) and replacing theoretical moments 
withmiheir sample equivalents, we obtain 

Having obtained , we adopt an iterative procedure called "Linearly convergent process" by Box and Jenkins (1976, 

p202) to obtain initial estimates of P. y. and 2. We compute the estimates 6'. ). 7 in this p r e d e  order using the 

iteration (4:IO). (4.1 1) and (4.12). The parameters p and 3 are set equal to zero to start the iteration and the 

values of v & ' ,  p and f to be used in any subsequent calculation are the most up to date values available. For 
example, using Table 3 for s = 1-2, we obtain 

& = 0.66, 6' = 3.54/(1+ B' + 1.32p + 6.28f2 + 2.177 + 1 . 3 1 ) ~ ) .  p = 0.62 3'. 
(1 I 

7. = 0.22/d2 . Table 5 shows how the iteration con"erged for s = 12 of Table 3. Using similar procedure, initial 
estimates are obtained for various values of s considered for data'of   able 3 and the res-ults-are shown in Table 7. 
Our initial values are close to the true values, demonstrating the workability of outlined procedure for determination of 
initial estimates. 

Table 5: Convergence of initial estimates of a'. p and y for s = 12 
of data of Table 3. 

Iteration Y 

. . 
5 .  LEAST SQUARES ESTIMATES . ' 

Having determined s and the initial .estimates of the paramerters including the residual variance, we consider 
how to obtain the final estimates when we have a realization { XI, X2, . . . , Xn ) of the time series X,, t E Z. To obtain the 
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Table 6: Convergence of final estimates of tx, 0, y and a2 for s ='12 of  able 3 

using the initial estimates 4 = 0.66, P = 0.36. 
C 

f = 0.13 N M ~  &' = 1.72 ofTable5. 

Table 7: Initial estimates of a. I), y and o2 for the different values of s for data of 

FbIe --- - - - - 
Initial estimates .- -- - - 7 

Table 8: Final estimates of a, 0, v and a2 for the different values of . . 
s for data of Table 3. - -. . 

1 7  Final .- estimates 

frr-ial estimates of the parameters, we proceed as in Subba Rao (1981), Gabr and Subba Rao (1981), Iwuezc ( 2004) 
.qild apply the methods of least squares to minimize 

I1 

T with respect to the parameters 8 = ( 0, = ci, H2 = P, 03 = 7 ) When minimizing S(O) with respect to 3, the normal 
cql~ations are nonlinear in 8. The solution of these equations require the use of nonlinear algorithm s u c l ~  as Newton- 
Raphson. The Newton-Raphson iterative procedure usually converge, but to obtain a good set of final estimates ii is 
necessary that we have a good set of initial values,of the parameters. 

The problem of obtaining the initial estimates of the parameters was discussed in Section 3. Using the 
Nawton-Raphson iterative procedure and the initial estimates tabulated in Table 7, we fir the rnodel (1 .I) to the sets of 
data whose second and third moments are described in Tables 2 and 3. Table 8 gives the final estimates aqd thei 
valires in parenthesis below the parameter estimates are the associated standard erroi's. Adequacy of fit was based 

on the randomness of the residuals by comparing the ac.f of the estimated residuals with It. 2 / & [ Chatfield (1980) 1. 
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6. CONCLUDING REMARKS 

.We have derived the third order moments and cumulants of the model (1.1). Our results show that for (1.1), 
the thiid order cumulant structure are similar to the covariance structure of zero values everywhere except at the 
multiples of the seasonal lag s. Based on this similarity, we obtained initial estimates of the parameters using the 
first and second moments. This method gave initial estimates that are close to the true values. The initial estimates 
were then used in the Newton-Raphson iterative procedure to obtain the least squares estimates. These final 
estimates were almost the same value as the true values proving that the entire procedure of finding the initial 
estimates and achieving the final estimates are adequate. 
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