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ABSTRACT o

A linear programming problem seeks for a non-negative column vector, x, that maximizes.a linear objective function,
u'x, subject to Ax < b, where A is a given matrix, and b and u are given column vectors. Using the same data the dual
problem to the primal seeks for a non-negative column vector, y, to minimize a linear objective function, b'y, subject to
AT y 2 u. The surrogate methods exploit the Duality Theory to combine the two problems into one system of linear
inequalities that treats the sign-restricied variables and the objective functions as constraints. Because the set of
constraints in linear programming problems is sometimes a mixture of inequality and equality constraints, this paper
modifies the surrogate methods and comes up with hybrids of the ones designed for a system of linear ineqi:alities
and those for a system of lingar equations. The paper also proves that a feasible solution to the resulting linear
inequality problem is made up of the primal and dual optimal solutions for the given primal problem and its associated
dual. It goes further to prove the dual theorem as it relates to the surrogate methods.
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1.~ - INTRODUCTION

A linear programming, LP, problem is an optimization problem with a linear functlon linear constramts and sign-
restricted variables searching for an x € R" to :

maximize - z = u'x
subject to Ax s b , . (M
and x 20

given AeR™" beR" and ue R" where u, x and b are column vectors (Hillier and Lieberman. 1974; Wagner,
1975; Strang, 1976; Bradiey, Hax and Magnanti, 1977).

For every LP problem (1), there is another LP problem related to it’and which reverses the objegtive function and the
direction of the functional constraints by asklng for a column vector, y€ R™ to

minimize zZ = by
subjectto ATy 2= u , - (2)
and .y 2 0.

Problem (1) is called the primal problem while the related problem (2) is known as the dual (Hillier and Lieberman,
1974, Wagner, 1975; Strang, 1976; Bradley, Hax and Magnanti, 1977). But note that we have in no way said that the
primal is always a maximization problem while the dual must be a minimization one. Because the dual of a dual is the
primal, whichever is the given problem to be solved-is taken as the primal and the related problem becomes the dual.

2. Preliminaries '

Exploiting the relevant aspects of the duality theory (Hllller and Lieberman, 1974; Wagner. 1975; Strang, 1976;
Bradley, Hax and Magnanti, 1977), we can reformulate the primal-dual pair of an LP problem into one\system of linear
inequalities, L1, so that like the simplex method; the surrogate methods can find x and y simultaneously. But unlike the
simplex method, the objective function value is computed only after a solution to the combined system is found, The
vital relationships utilized in the reformulation of the LP problem are summarized below as lemmas from Hillié and
Lieberman, 1974; Wagner, 1975; Strang, 1976; Bradley, Hax and Magnanti, 1977.

Lemma 2.1 (Weak Duality Theorem)

If (i) xis primal feasible; and (i) y is dual feasible; then (i) uszbTy

Lemma 2.2 (Sufficient Optimality Criterion) .
f (i) x'is primal feasible; (ii) y'is dual feasible; and (iii) u'x’ = b'y"; then (iv) x' is primal optimal and

y' is dual optimal.
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Lemma 2.3 (Unboundedness and Infeasibility Property)

i) If 3x primal feasible and 3y dual feasible, then u'x =+ o

i) if 3x primal feasible and 3y dual feasible, then UTx = -

The converse of Lemma 2.2 is
Lemma 2.4 (Strong Duality Theorem)
If (i) x*is primal optimal; and (i) y* is dual optimal; then (i) u'x* =.b'y*

Lemma 2.4 is what all the texts on LP problem refer to as the dual theorem because it is the fundamental theorem of
the duality theory. However the proof is centered on the simplex method. Since the surrogate methods are primarily
designed to get a feasible solution, Lemma 2.2 is very crucial in adapting those methods for LP problems. The proofs
of these lemmas can be found in any of the references given. However the proof of Lemma 2.4 will be presented later
as part of Theorem 3.1 and as it relates to the surrogate methods. ' -

3. The Transformation

Lemma 2.2 is a sufficient condition for optimality. Therefore in our search-for the x and y that satisfy the functional and
sign constraints in (1) and (2), we must make sure that they also satisfy the equality u'x = by so that they are not only
feasible but also optimal. However,

u'x = by <==> u'

x < by and u'x > by,

By Lemma 2.1, once x and y are primal and dual feasible, respectively, they automatically satisfy ghé relationship u'x
< bTy. Therefore to guarantee that equality is satisfied, all we need to do is to include the other half of the pair of

inequalities as
u'x+by < 0. (3)

With (1), (2) and (3) therefore, we can transform an LP problem into an LI problem that seeks foran x ¢ R"and ay ¢
R™ such that .

A 0] b
o) A X i
'In O S O (4) .
O -In y 0
-u’ b’ 0
where a = a/ | a fori=1,2,....n, rowsofA;
0 = -u/ || a; || fori=1,2,...,n, rhsofthedual;
(u,b) = (-u", b ][(-u",bN)||, the normalized optimality row;

and ||v|| is the norm of a vector, v.

Recall (Oko, 1992) that the rows of A are assumed normalized or must be normalized before applying the surrogate
methods. But this does not mean that its columns, which are the rows in the dual problem, are normalized too. In other

words (Oko, 1992) .
la'l = 1 == [al = 1.

Therefore for correct application of the surrogaté methods, the columns of A, (i.e. the rows of ATy and (-u', b') must be
normalized as defined in (4) for &', G; and (u', b’). .
Let us denote the coefficient matrix in (4) by A’, the variables by w-and the right-hand side by f. Then in our compact

notation, (4) can be written as

Aw s f. (5)



ADAPTATION -Il OF THE SURROGATE METHODS FOR LINEAR PROGRAMMING PROBLEMS T
Theorem 3.4 ——
.LetwT.= (x¥T y®T) be the k™ iterate at which the surrogate algorithms ierminate normally without aborting. Then we"=
claim that

(i) x®is primal optimal; and (i) y® is dual optimal.
Consequently,

iy u'x® = b'y® = the required optimal objective function value.

Proofs of parts (i) and (ii)
The original proof of convergence (Oko, 1992) and those in two other papers (Oko, 2005a; Oko, 2005b) established a
steady convergence to a feasible solution. Therefore if the iterations terminate in a normal way without aborting, then

(¥, v¥7) is a feasible solution for (4). Now

w® feasible <==> AW®<f and w®3>0
<==> Ax¥<b, Ay¥<u, x¥<0, y¥<0, wx®+by¥ <0
==> x is primal feasible, y dual feasible and u'x™® - b'y* > 0,

But by Lemma 2.1, u'x® - b'y® <0,

Therefore u'x™ -b'y® <0 and 'u\:)\c(k') by 0 <==> uwx®=py®

With X primal feasible, y* dual feasiblg, and ux™ = b'y®, then by Lemma 2.2
(i) x™ is primal optimat; and (i) y™ dual optimal.

Proof of part (iii)
it should be noted that what is computed during the search for a feasible solution for (4) is not u'x® and/or b'y™ per
s¢, but rather it is the arithmetic expression, ux™ - b'y®. Therefore the value for u"x® or b'y® has to be computed
only after a normal termination has occurred for the algorithms. Let us assume that u'x" # b'y™ at the time the
iterations have terminated in a normal way without being aborted abnormally for inconsistency.

Then by the definitions in (4),

Wx® 2 pTy®  <==> @/ b £ by b

<==> ux® % b'y® and x*T, y*T)is not a solution for (4).

Bét this contradicts not only the already proven first part of the theorem, but also the established proofs of
convergence to a solution when the iterations terminate without aborting for inconsistency! Therefore our assumption

is false and so Theorem 3.1 holds.

4. implementation ) :
A"is a (2m+2n+1) by (n+m) sparse matrix. It is made up of 10 blocks, 6 of which are zero and identity matrices.
Likewise f is an (2m+2n+1)-vector with blocks of zero elements. The zero and identity matrices need not be stored.
Since neither A’ nor f is recomputed during the search for-a solution, storing them as they are will be most inefficient in
space requirements and in computation time. Table 1 summarizes the actual space requirements.

Table 1: Storage Requiremants

Constraints Augmented Matrix | Required No. Locations
Primal . Alb 2m(n+1)
Dual Alo 2n(m+1)
Variables “lenn]O 0
Optimality (-u', b0 2(n+m)

Total A'lf " 4(mn+m+n)
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In Table 1, we have multiplied each required number of locations by 2 because floating-point numbers_are better
computed in Bouble precision arithmetic to improve accuracy.

Equality Constraints and Unrestricted Variables _
Ey the theory of LP problems, the primal constraints are paired up with the dual variables, and the primal variables

with th= dugl constraints (Hillier and Lieberman, 1974; VWagner, 107Z; Dradley, Hax and Magnanti, 1977). If a primai.
constraint is an inequality constraint, its associated dual variable is restricted in sign. But if it is an equality constraint,
the associated dual variable has no sign restriction. Similarly, a sign-restricted primal variable gives rise to an
associated dual inequality constraint, while an unrestricted primal variable results in a dual equality constraint. These
correspondences are summarized in Table 2 below.

Fer convenience, it is advisable to arrange the constraints so that the primal inequality constraints are grouped
together, preferably as the first set of m; constraints, say, such that 0 < m, < m. Similarly, the first n, primal variables
should be the sign-restricted ones such that 0 s ny < n. With a 5-type classification, we shall have

Primal constraints as type 1;

Dual constraints as type 2;

Primal sign restrictc = variables as type 3;
Dual sign restricted veriables as type 4; and
The optimality constraint as type 5.

s

This will facilitate handling of the problem without storing A’ and f as they are.

Table 2: Primal-Dual Correspondenccs

One Problem The Other Problcm
Maximization of cbjective function Minimization of objective function
Coefficients of objective function Right-hand sides of constraints
i™ constraint, a’x < b, i" variable, y; 2 0
i" constraint, a'x = b, i" variable, y; is unrestricted
j" variable, x; 2 0 j" constraint, (a)"y 2 u;

i" variable, x; unrestricted j" constraint, (a)"y = u;
Inconsistency Unbounded function value
Unbounded function vaiue Inconsistency

5. The Algorithms '
The surrogate algorithms for solving LP problems are hybrids of those for solving LI problems (Oko, 1992) and those

fcr LE probiems (Oko, 2005¢). The essential definitions and formulae we used for our searches were

{il1<i=<n}
d = Ax-b, the distances of x from the m hyperplanes, i.e. the error in x
¢, = A@@")',  ie.c, = a-a° the cosine of the angle between H, and H,

g = (di-rcu)/V(i-(cy)®) Yiel and 1-(cy)?#0
= the distance of x from the most violated half-space, H,.

,
|

To accommodate the enlarged but sparse system, the following formulae listed below will be in use. Note that just as
the distance of the pomt x from the i" hyperplane of a functional constraint is defined as

a'x - b Vi,
its distance from the | hyperplane with respect to variable-constraint j is
-&x-0=-x, Vj whereé isthe j" row of the identity matrix I,.

These distances and the cosines for the formy'a for g; are summarized in Table 3.
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Table 3:  Formulae for Distances and Cosines

| Constraint | Cosine/Dot-product

1 Matrix Distance a? e (b
A Ax-b | A@")' 0 * -a 0 AT
A Ay - i 0 A@E"' 0 -3 Ab"
-1, -X -(@")' 0 €p 0 '
In -y 0 (@)’ 0 € -b"
(-u’,b") -u'x + by | -u'(a”)’ | b@Ey' b l

With the above formulae, it is obvious that we will need no computations for a lot of the data/information required
since such can be retrieved from other sources.

We shall modularize the algorithms into sub-algorithms for specific tasks.

5.4

5.2

- Surrogate-! for LP Problems

The most violated half-space and the most violated manifold of two half-spaces are chosen. If-there is no
violated half-space, x is a solution, If theré is a violated half-space but no violated manifold, then the
orthogonal projection of x onto the most violated half-space is a solution. Otherwise that orthogonal prOJectlon
replaces x and the process is repeated with the new x. P

Step 1. Call Initialize; ’

Step 2. Call Choose1 (p, ri, Tp); 9=0;

Step 3. If r, < & then output u'x™, x®, y* and stop; else gb to Step 4;
Step4. For Type =1to 5; ' ' =
Step 4.1 Call Dotprd (c, Type, T,. p);
Step 4.2 Call Choose2 (ry, ¢, Type, s, g, Ts, V);
Step 5. Call Update (T, P. 1, 9, K);
Step 6. If g s 5 then output u"x™*"

else goto Step 2 withk =k + 1.

(k+1) | (k+1)

X0y and stop;

Surrogate-Il for LP Problems '

The most violated half-space and the most violated manifold of two half-spaces are chosen. If there is no vuolated half-
space, x is a solution. If there is a violated half-space but no violated manifold, then the orthogonal projection of x onto
the most violated half-space is a solution. Otherwise the orthogonal projection of x onto the most violated manifold
{not the most violated half-space as in 5.1) replaces x and the process is repeated with the new x.

53

Steps 1 - 4 are the same as those in section 5.1 above.

Step 5. If g s & then go [ Step 6; else go to Step 8:

Step 6. Call Update (T,, p, rx, g, k);

Step 7. Output u'x**? x**" y** and stop;

Step 8. Bs = g/N(1-v?); B = 1k - BsV;

Step 9. Cali Update (T, p, By, 9, k); Call U’pdate (Ts, s, Bs, g, k+1);
Step 10. Go to Step 2 withk =k + 2.

Algorithm for Surrogate-Iii

This is similar to Surrogate-Il but 3 (not 2) most violated half-spaces are selected and the infeasible x is projected
crthogonally onto their manifold. :

Steps 1 - 8 are the same as those in 5.2;
Step 9 r = V()2 + g?:g=0;
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Step 10. For Type =1to 5;
Step 10.1 Call Dotprd (c, Type, T,, p); Call Dotprd (&, Type, Ts; s);
Step 10.2 ¢ = (ByC + Bet)er; Call Choose2 (fiar, 6, Type, t. g, Ty V);
Step 11. If g < 5 then go to Step 12; else go to Step14;
Step 12. Call Update (T, p, By, 9, k); Call Update (T, s, Bs, g, k+1);
Step 13. Output u'x**?, x**2 y&2 gnq stop:;
Step 14. A = gIN(1-v3); Ay = Bg(1-MV/ k), Ay = Bp(1 - AW / i),
Step 15. Call Update (T, p, A, g, k); Call Update (Tg, s, A, g, k+1);
Step 16. Call Update (T, t, A, 9, k+2),
Sfep 17. Goto Step 2 withk =k + 3.
5.4 Algorithm for Surrogate-R

R (2 s R sm) violated and distinct constraints are chosen for computation of a linear combination to serve as a
surrogate constrairt. The outward normal, &, of the surrogate is then used to update x and the search for a
solution continues.

Step 1.
Step 2.
Step 3.
Step 4.
Stép 5.

Step 6.

Step 7.
Step 8.
Step 9.

Step 10.

Step 11.
Step 12.
Step 13.

Call Initialize; ko = 0;
Call Choosel (p, rx, Tp);
If 1, < & then output u'x*®, x® y& ang stop; else go to Step 4;
P={p,To};q=14&=0;2=0;
If Ty,=1thenforj=1ton; 4&=ay;
elseif T;, =2 then for j = 1 to m; &+ = 3
elseif T, = 3 then 4y, = -1; elseif T, = 4 then dy ., = -1; else 4, = (-u’,bT);
For Type=1to 5;
Step 6.1 Call Dotprd (c, Type, 6, k);
Step 6.2 Call Choose2 (rs, ¢, Type. s, g, Ts, v);
Ifg <& or {s, Ts} < P then go to-Step 12; else go to Step 8;
P=PU(s, Ts}; q=q+l; Bi=g/V(1-v?); Bx=rc-Bsv;
ket = V(1) + (€)%
If Ts= l_rthcn Forj=1lton; = & = (Bkéﬁi_ﬁsagj) / Tiel;
elseif T = 2vt‘hen For j=1to m; ax+1 nij = (Brkn+j + Bslsj) / T
elseif =3 thenForj=1ton; & ;= (Bxlx; - Bses) / r+1s
elseif Ts = 4 then Forj =1 to m; a1 o+ = (Bt = BsCsi) / T
else a = (Bt Bo(-u', b)) / 1
g=0; Goto Step 6 withk =k +1;-
(KT 0Ty o (KOT (KOTy 5

y

y

TX(ROW), X('\’Q*‘l), (k0+q)

If g <3 then outbut u and stop; else go to Step 14;

n

Step 14. Fori=1tom;d;= dp“*rkzlaijﬁkj;
- -
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m

Step15. Fori=1ton;di=4d- rkzléiiﬁk,nﬂ;
J=
Step 16. d, =d, - re(-u’, b')-y;

Step 17. Go to Step 2 with k = k+1 and ko =k¢ + q.

55 Subalgorithm Initialize;
This subalgorithm reads in the given parameters and uses them to initialize the remaining working data
Step 1. Inputm, n, my, ny, A, b, u, §;
Step2. A=-A", d=b d=-u u=u;
Step 3. Normalize the rows of Ald, A|d and (-u', bT); /* b is now used for b' */
Step4. x9=0;y?=0;k=0; /*Zero for x &y is a convenient arb. choice. */
Step5. d=-d,d=-0;d,=0; /*Dist. of x&y from pri, dua. & opt. %:-spaces */
Step 6. - Return.

5.6  Subalgozithm Choose1 (p, r, T);

Choose p such that H; is the most violated of all the half-spaces.

Step1. r=d,; T=5 I* Choose the optimality constraint */

Step2. Fori=1tom;; [* Choose from primal constraints or dual variables */
Step2.1 Ifr<d;thenr=d;; p=1,T=1;
Step2.2 Ifr<-yithenr=-y; p=i; T=4,

Step 3. Fori=m;+] to m;
Ifr< Idil thenr < | dil;p=i;T= 1;

Step 4. Fori=1 ton; /* Choose from dual constraints or primal variables */
Step 4.1 Ifr<dithenr=4&; p=i,T=2;
Step4.2 Ifr<-xjthenr=<x;p=i;T=3;

Step 5. Fori=n;+1 ton;
Ifr<|d| thenr=|d|;p=1;T=2;

Step 6. Return.

‘6,7  Subalgorithm Dotprd (¢, T, T4, k);

69

The dot products of ail the outward normals in T, with that of the most violated half-space k in T, are cotaputed using
a computed-go-to statement to select the required section. Type 6 is the constructed surrogate constraint for

Surrogate-R.
Stepl. ¢=0;

Step2. Goto(3,5,7,9,11), Ts;
Step3. IfT;=1thenc= A(ak)T; elseif T; = 3 then ¢ = -ay;

n
elseif T; =5 then ¢ = -Au'"; elseif T, = 6 then Fori =1 to m; ¢ =_Z;aijﬁkj;
[E

Step 4. Return;
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Step’Se If ;=2 then ¢ = A(Z")"; elseif T, = 4 ther. ¢ = -;

elseif T; =5 then ¢ = Ab; elseif T, = 6 thn Fori= 1 ton; ¢ = niléijék,nﬂ';
Step 6. Retui'n; J
Step 7. IfT)=1thenc= -(ak)T' elseif T) =3 thenc = ¢y;
elself Ti=5thenc=u'"; elseif T, = 6 then Fori=1to n; ¢ = -4j;
Step 8. Return;
Step9. IfT=2thenc=-(a ) ; elseif T} =4 then ¢ = ey;
elseif Ty = 5 then ¢ = -b; elseif T, = 6 then For i = 1 to m; ¢; = =& n+i;
Step 10. Return;
Step 11. If Ty=1thenc; = -u'(a")T; elseif T =2 then c; = b-a";
eiseif T) =3 then ¢; = u'y; elseif T) =4 then ¢; = -by;
elseif Ty =5 thenc) = 1; else ¢ = (-u', b")4y;
Step 12. Return.

5.8 Subalgorithm Choose2 (r, ¢, Type, 8, g, Ts, V);
The algorithm chooses H, (or H,) such that dH,NdH; (or aH oNdHOH,) is the most violated manlfold of 2 (or 3)

half-spaces.
Step 1. If Type=1thenq=m;q;=m,; f=d;

elseif Type=2thenq=n; q,=n;; f=4g,

elseif Type =3 then q=ny; q1 =ny; f=-x;

elséinype =4thenq=m;;q =mp;f=-y; elseq=1;q,=1;f =dg
Step 2. Ifc=0then go to Step 4; else go to Step 3;

' Step.3. Fori=1togq;
- ' Step 3.1 fi=fi-rc;;
Step 3.2 If 1-(c;)? # 0 then £, = £ / V(1-(c))?);
Step33 Ifl-(ciy=0& (A £ qr & fi>0) or (i > qi & f; # 0)) then abort; else continue;

Step4. Fori=1toq™

If © i<q&g~fitheng=1;s=i;T=Type; v=c

elseifi>q & g< |fi| theng= |f|;s=1i; T=Type;v=c

Step S. Return.

$9  Subalgorithm Update (T, p, r, g, k);
This algorithm updates x and y with the outward normal of the chosen half-space. if a solutlon is not yet found,
dis also updated. ‘ .
Stepl. If  T=1then X+ = (0 r(a") ; elseif T = 2 then y(k”) =y®_ (@),

elseif T =3 then x** = x® + 1(¢”); elseif T= 4 then y**V = y® + r(e”)T;

LN LA I (e

>

else x
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Stepd. Ifg <3 then return; else go tdStep 3;
Step 3. If T=1thend = 4~ rA(&); elseif T = 2 then d = d - rA(z")":
elseif T=£ thend,=d, - r;
Step 4. Return.

¥ Conclusion

~-= zaper modifies the surrogate methods and comes up with hybrids of the ones designed for a system of linear
~ea_2 2es and those for linear equations. It is also shown that a feasible solution to the resulting linear inequality
- =~ 15 made up of the primal and dual optimal solutions for the given primal problem and its associated dual. The
=.z T—eorem as it relates to the surrogate methods is proved. The surrogate algorithms for LP problems are given.
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