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ABSTRACT

In this research, a vector bilinear autoregressive time series model was proposed and used to model three
revenue series  ttt XXX 321 ,, . The “orders” of the three series were identified on the basis of the distribution of
autocorrelation and partial autocorrelation functions and were used to construct the vector bilinear models. The
estimates obtained from the bilinear fits were compared graphically with those obtained from fitting linear
(autoregressive) models. Residual variance and Box-Ljung Q statistic comparisons were also made. The result
showed that vector bilinear autoregressive (BIVAR) models provide better estimates than the long embraced linear
models.

KEYWORDS: Linear time series, Autoregressive process, Autocorrelation function, Partial autocorrelation function,
Vector time series and bilinear vector process.

INRODUCTION

In the past seven decades, a time series was
usually modeled as a linear function of its own past,
using autoregressive (AR) or mixed autoregressive
moving average (ARMA) frame work. This was because
these models are easy to analyze and they provide fairly
good approximations for the true underlying process.

However, the underlying structure of the series
may not be linear and what is more, the series may not

be Gaussian. In these situations, second order
properties, such as co-variances and spectra, can no
longer adequately characterize the properties of the
series. This called for the emergence of non linear
models in which bilinear forms a class.

Weiner (1958) considered a nonlinear
relationship between an input tu and an output tX
(both observable) using Volterra series expansion given
by
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From a given finite realization of a process, one
cannot estimate the parameters      ,...,, ijkiji 
efficiently. To overcome this difficulty, Granger and
Anderson (1978) introduced a class of nonlinear models

called “bilinear” in the time series context
[assuming ttu  (unobservable)] satisfying
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where  B and  B are thp order AR and thq
order moving average (MA) polynomials on backward
shift operator B and ij are constants.

Maravall (1983) used a bilinear model to
forecast Spanish monetary data and reported a near
10% improvement in one-step ahead mean square
forecast errors over several autoregressive moving
average (ARMA) alternatives. There is no doubt that
most of the economic or financial data assume

fluctuations due to certain factors.
James (2014) used a bilinear model to forecast

South Africa’s gross domestic product (GDP).
Comparison was made with the forecasts generated by
vector autoregressive (VAR) models. The result showed
that bilinear forecasts were better than the VAR
forecasts.

The general form of the bilinear model
according to Rao (1980) is given by the difference
equation:
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Where  )(te is an independent white noise process

and 10 c .  )(tX is termed the bilinear process. The
autoregressive moving average model ),( rpARMA is

obtained from (2) by setting 01 ll
b  l and 1l .

Iwueze (2002) studied the existence and
computation of all second order moments of the vector
valued time series of the form
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where  Tpttttt XXXXX 121 ,...,,,  , C and bj

are given 1p matrices with real entries, A and jB
are given matrices with real entries; and

     ghqsmgmrp ,max,,min,,max  . He
found that the vectorial representation leads to an
important result on matrix algebra with respect to the
spectral radius of Kronecker product of matrices.

Boonchai and Eivind (2005) gave the general
form of multivariate bilinear time series models as:

)()().(.)(.)(.)( tejteitXBjteMitXAtX ddijji    ---------------------------------- (4)

Here the state )(tX and noise )(te are n-vectors and

the coefficients iA , jM and dijB are n by n matrices. If

all 0dijB , we have the class of well-known vector

ARMA -models.

Iwok and Etuk (2009) established the vector form
of bilinear autoregressive moving average time series
model as:
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and recorded its advantages over the pure vector
autoregressive moving average models.

We have noted here that except for Boonchai
and Eivind (2005) who gave a theoretical form in
population dynamics, other works in bilinear time series
were based either on mixed ARMA univariate cases or
vector of lagged variables of the same time series.

In this research, however, an AR bilinear
process is isolated from the vector framework of Iwok
and Etuk (2009). That is, a multivariate bilinear AR case
where each element of the vector is being explained by
the lag values of itself and other time series variables in
both the linear and non linear components of the model.
This differs from the work of Iwueze (2002) where only
one time series was involved and the vector form
referred to lagged variables of the same series. Our
objectives extend to comparing the performance of our

new vector concept with the long embraced linear
model.

METHODS OF ESTIMATION

Let  nttt XXX ,...,, 21I
itX be a vector of n-dimensional

time series.

Linear AR Model
(i) Univariate case:

This is a model in which the current value of the
process is expressed as a finite, linear aggregate of
previous values of the process and a shock it .

For the n-series,  itX is called a thp order

autoregressive process [denoted by  pAR ] if it satisfies
the difference equation,

itpitpititit XXXX    ...2211 ------------------------------------------------------------------------ (6)
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where

p ,...,, 21 are constants and  it are a purely random processes.

(i) Vector Case:
The general vector analogue to the univariate Autoregressive time series models for the n- series is:
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where irk . are the Autoregressive (AR) parameters. ip are the AR orders.  ntttit  ,...,, 21
1  is a vector

of white noise.

Vector Non Linear Models
Given the vector elements nttt XXX ,...,, 21 , the non linear model for a pure AR process is:
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where irkl. are the bilinear parameters of the product series and 0l  q .

Bilinear Vector Autoregressive Model (BIVAR)
Combining equations (7) and (8), the BIVAR model emerges:
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Unlike (6), Equation (9) comprises both the linear and non linear components. This study seeks to compare the
performances of the two models (Linear and Bilinear). The parameters of the different models are estimated using
linear and intrinsic linear regression techniques.

RESULTS
Estimates for the linear models:
The distribution of autocorrelation and partial autocorrelation functions of the non stationary series suggested pure AR
process of order 3 for tX 1 , AR process of order 2 for tX 2 and AR of order 1 for tX 3 . The regression estimates
obtained provide the following Autoregressive models for the three series of the vector:
(i) 3121111 321507.0354064.0309589.0   tttt XXXX ------------------------------------------------------ (10)

(ii) 22122 436982.0497391.0   ttt XXX ------------------------------------------------------------------------- (11)

(iii) 133 817610.0  tt XX ------------------------------------------------------------------------------------------------ (12)
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Table1: Three sources of internal generated revenue (X1t,X2t,X3t)
S/N X1t X2t X3t S/N X1t X2t X3t S/N X1t X2t X3t

1. 30.87 17.01 13.86 41. 186.82 139.41 47.41 81. 164.91 145.21 19.70
2. 31.26 17.31 13.95 42. 169.89 137.98 31.91 82. 215.65 139.52 76.13
3. 29.35 16.10 13.25 43. 176.91 147.73 29.18 83. 167.03 151.33 15.70
4. 30.05 18.68 11.37 44. 256.21 238.38 17.83 84. 219.36 160.19 59.17
5. 25.96 17.46 8.50 45. 260.00 169.12 90.88 85. 176.06 129.01 47.05
6. 30.31 20.55 9.76 46. 434.75 308.15 126.60 86. 251.51 70.66 180.85
7. 31.54 17.04 14.50 47. 258.23 207.11 51.12 87. 325.11 207.01 118.10
8. 45.20 23.85 21.35 48. 169.79 143.58 26.21 88. 257.86 192.54 65.32
9. 41.07 20.57 20.50 49. 358.15 328.97 29.18 89. 195.03 162.92 32.11
10. 45.46 24.86 20.60 50. 397.26 383.01 14.25 90. 220.52 165.52 55.00
11. 48.17 29.65 19.03 51. 279.01 152.71 126.30 91. 225.77 107.42 118.35
12. 40.17 28.67 11.50 52. 220.75 157.39 63.36 92. 167.89 120.52 47.37
13. 45.79 29.76 16.03 53. 178.99 149.68 29.31 93. 198.30 112.85 85.45
14. 32.76 22.89 9.87 54. 164.50 105.69 58.81 94. 257.08 115.70 141.38
15. 30.77 23.25 7.52 55. 192.33 138.53 53.80 95. 183.01 110.86 72.15
16. 32.07 21.97 10.10 56. 198.54 100.29 98.25 96. 106.12 76.75 29.37
17. 37.83 19.64 18.19 57. 143.54 86.21 57.33 97. 207.17 156.60 50.57
18. 43.85 22.60 21.25 58. 155.90 124.20 31.70 98. 209.36 179.21 30.15
19. 30.77 12.60 18.17 59. 198.51 120.68 77.83 99. 309.66 191.79 117.87
20. 37.06 14.53 22.53 60. 260.93 175.79 85.14 100. 391.27 258.99 135.28
21. 31.96 10.61 21.35 61. 299.44 270.84 28.60 101. 388.93 232.97 155.96
22. 29.00 10.30 18.70 62. 211.02 185.08 25.94 102. 250.32 198.14 52.18
23. 30.36 15.04 15.32 63. 188.06 158.68 29.38 103. 328.70 289.35 39.15
24. 36.63 16.90 19.73 64. 252.71 247.66 5.05 104. 475.41 285.73 189.68
25. 45.77. 30.45 15.32 65. 185.72 160.47 25.25 105. 396.98 241.31 155.67
26. 50.00 31.50 18.50 66. 101.75 77.25 24.50 106. 461.13 317.68 143.45
27. 72.50 55.20 17.30 67. 145.56 118.56 27.00 107. 331.10 138.69 192.41
28. 77.18 51.73 25.45 68. 184.41 156.59 27.83 108. 363.17 263.85 99.32
29. 104.08 67.58 36.50 69. 184.41 156.59 27.82 109. 248.5 202.20 46.30
30. 120.70 80.90 39.80 70. 149.33 73.20 76.13 110. 339.98 224.38 115.60
31. 157.31 111.47 45.87 71. 153.39 138.19 15.70 111. 377.75 245.45 132.30
32. 220.45 164.79 55.66 72. 171.38 115.46 55.92 112. 300.42 244.67 55.75
33. 198.76 132.35 66.41 73. 180.48 96.33 84.15 113. 366.28 303.08 63.20
34. 171.03 156.70 14..33 74. 170.13 135.03 35.10 114. 441.37 270.02 171.35
35. 231.97 205.76 26.21 75. 184.16 145.96 38.20 115. 246.69 151.69 95.00
36. 343.58 321.12 22.46 76. 124.36 81.71 42.65 116. 416.48 327.73 88.75
37. 143.73 132.88 10.85 77. 222.96 194.45 28.51 117. 320.97 213.59 107.35
38. 126.16 91.21 34.95 78. 175.75 151.25 24.50 118. 347.35 272.14 75.21
39. 107.93 74.75 33.18 79. 614.93 587.93 27.00 119. 422.91 291.66 131.25
40. 162.04 139.41 22.63 80. 142.32 114.50 27.82 120. 641.23 485.56 155.67
Source: Monthly generated revenue (for a period of ten years) from Ikot Ekpene L.G.A. of Nigeria.

Estimates for the BIVAR models:
The bilinear vector autoregressive model consists of two parts. The first part is the linear vector AR process,

while the second part is the product of lagged vector elements and white noise. Estimates of the BIVAR parameters
and fits were obtained by treating equation (9) as an intrinsically linear model. The following parameter estimates were
obtained: 3122211312111 178.0163.0397.00322.00610.0266.0   ttttttt XXXXXXX
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3122211312112 0609.0497.00903.0177.0433.00870.0   ttttttt XXXXXXX
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1 0 2 1 2 0 2 1 3 0 2 1
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3122211312113 0435.00079.00073.0651.00544.00922.0   ttttttt XXXXXXX

1 0 3 1 2 0 3 1 3 0 3 10.000064 0.000374 0.0104t t t t t tX X X          ------------------------------------------- (15)

As could be seen above, these models are linear in states kitX  but non-linear jointly with lit as the name
‘bilinear’ implies.

A Comparison of the Linear Model and Vector Bilinear Autoregressive Time Series Models
(i) Residual Variances
After fitting the models, the calculated residual variances from the estimated linear equations (10)-(12) are

88.23 for tX 1 , 76.25 for tX 2 and 40.28 for tX 3 . Similarly, the residual variances for the bilinear vector models in

equations (13)-(15) are 16.36 for tX 1 , 22.90 for tX 2 and 21.96 for tX 3 .Comparatively, the residual variances of the
bilinear models are smaller than the variances obtained from the linear models. This makes bilinear vector AR models
superior to the linear AR counter part.

(ii) A Portmanteau Lack of Fit Test
A variant of the Box and Pierce Q statistic is the Box-Ljung statistic, define as
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where the first m autocorrelation functions of the residuals  ̂kr ’s are examined for evidence of adequacy of the

model. If the model is inappropriate, the average values of *Q will be inflated.

First, let  itARLIN XQ*
. be the Box-Ljung Q statistic obtained from fitting AR model to itX and let

 itARBV XQ*
.. be the Box-Ljung Q statistic obtained from fitting BIVAR model to itX .

This test considered the first 20 autocorrelations of the t̂ ’s and the calculated *Q ’s were as follows:

  61.271
*

.. tARBV XQ ,   49.442
*

.. tARBV XQ ,   25.263
*

.. tARBV XQ and   18.361
*

. tARLIN XQ ,

  72.442
*

. tARLIN XQ ,   74.483
*

. tARLIN XQ .

Since the *Q values for the AR fitted models are greater than the values of the BIVAR *Q statistics, we
conclude that the BIVAR models are the most appropriate.

(iii) Plots of Actual and Estimate Values
The actual and estimated values of the models are plotted in figures 1(a and b), 2(a and b) and 3(a and b)

below. Each figure displayed contains two plots (the actual marked by ‘o’ and the estimate marked by ‘+’)
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Key: o (actual plot) and + (estimates plot)
Figure 1a: Vector BILINEAR-AR Plots of actual and estimates of tX1
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Key: o (actual plot) and + (estimates plot)
Figure 1b: Linear -AR Plots of actual and estimates of tX 1
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Key: o (actual plot) and + (estimates plot)
Figure 2a: Vector BILINEAR-AR Plots of actual and estimates of tX 2
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Key: o (actual plot) and + (estimates plot)
Figure 2b: Linear-AR Plots of actual and estimates of tX 2

12010080604020

600

500

400

300

200

100

0

Index

X2t

VECTOR BILINEAR AUTOREGRESSIVE TIME SERIES MODEL AND ITS SUPERIORITY 57



Key: o (actual plot) and + (estimates plot)
Figure 3a: Vector BILINEAR-AR Plots of actual and estimates of tX 3 .
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Key: o (actual plot) and + (estimates plot)
Figure 3b: Linear -AR Plots of actual and estimates of tX 3 .
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Examination of the actual and estimates plots above
show that AR model estimates exhibit less interwoven
behaviour with the real data than BIVAR estimates plots.
This is an indication of a high degree performance of the
bilinear models.

DISCUSSION
As noted in the literature review, most works

assume that a bilinear model is a function of lag
variables of the dependent variables. This is a situation
where the same series is modeled using the lag values
of itself. This work, however, differs in this approach. In
this work, each element of the vector is being explained
by the lag values of itself and other time series variables
in both the linear and non linear components of the
model. It is believe that this research has provided
another approach to bilinear time series modeling.

CONCLUSIONS

As mentioned earlier, a linear time series model
such as AR expresses itself as a linear combination of
its past and has been widely used in diverse fields. Due
to non stationarity of most series, however, bilinear
models have replaced linear models by offering better
analytical tools for analyzing several time series data.
From the minimum variance property, Q statistic and
graphical verdict shown in this work, there is no gain
saying the fact that some series especially, revenue
series assume not only linear component but also non
linear part. This is so because of the random nature of
observations assume by certain processes. The result of
this work confirms that non linear models such as
‘bilinear vector AR’ are superior to pure linear AR
models.
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