IDENTIFICATION OF TRIMER AND DIMER OF 4-HYDROXY-3-METHOXY BENZALDEHYDE IN CRYSTAL STRUCTURE OF VANILLIN

N. T. AKINCHAN

ABSTRACT

The effect of intermolecular hydrogen bonding on the molecular structure of vanillin has been studied using negative ion chemical ionization (NICI) mass spectrometry methods. The [Trimer-H₂O] and [Dimer-H₂O] were observed at m/z 438 and 286 respectively in NICI (CH₄) mass spectrum of vanillin. The NICI (CI) mass spectrum of vanillin differs where deprotonated molecular ion peak, [monomer-H] at m/z 151 was the second most abundant ion peak. The base ion peak was observed at m/z 187 due to the presence of monomer-²⁵Cl. The [Trimer-H₂O] and [Dimer-H₂O] were not detected due to the presence of chloride ion. The results obtained support that the crystal of vanillin consists of trimer and dimer of 4-hydroxy-3-methoxy benzaldehyde.

Keywords 4-hydroxy-3-methoxy benzaldehyde, vanillin, intermolecular hydrogen bonding.

INTRODUCTION

Vanillin (4-hydroxy-3-methoxy benzaldehyde) is a degradation product of lignin, which is one of the constituents of wood (Glasser, 1990). It is also an industrial raw material for the production of paparine, a constituent of opium (Cram and Hammond, 1964). Further, the vanillin thiosemicarbazone, one of its derivatives, has been used as metal chelating agent (Akinchan and Abram, 2000. Akinchan et al., 1996). The molecular structure of vanillin is not known, whereas X-ray crystallographic data on Ni(vsch)₂ 4C₂H₅OH (vsch=Vanillin thiosemicarbazone) has been reported (Akinchan and Abram, 2000). The presence of four ethanol molecules in the unit crystal suggests intermolecular hydrogen bonding involving uncoordinated hydroxy group of vanillin moieties. Further the crystal structure data reported earlier on phenol indicated, its trimeric nature due to strong intermolecular hydrogen bonding (Fabio et al., 1995). The chemical ionization mass spectrometry has been found useful for solving stereochromatic problems (Harrison, 1992, Akinchan, 2001). The Negative-ion chemical ionization mass spectrometric data have been reported on “cis-diols, (Winkler and Stahl, 1978, 1979) hydroxy coumarin (Madhusudanan et al, 1990) and semicarbazone (Akinchan, 2002) derivatives. The present article describes the negative-ion chemical ionization (NICI) mass spectral studies, which were undertaken to know the structure of vanillin.

MATERIALS AND METHODS

The negative ion Chemical Ionization, NICI(CH₄) and Negative Ion Chemical Ionization, NICI(Cl) mass spectra were recorded at Regional Sophisticated Instrumentation Centre at Central Drug Research Institute, Lucknow, India. The reagent gases used were CH₄ and a mixture of CHCl₃ and MeOH in 1:10 molar ratio. The Spectrometer used was JEOL-SX-102.

RESULTS AND DISCUSSION

NICI(CH₄) mass spectrum of 4-hydroxy-3-methoxy benzaldehyde (vanillin)

The negative-ion Chemical Ionization (NICI(CH₄)) mass spectrum of vanillin is summarized in Table 1 and shown in Figure 1. The [trimer-H₂O] and [dimer-H₂O] were observed at m/z 438 and 286 respectively but deprotonated monomer, [monomer-H] ion was absent. The reported X-ray data on phenol indicated that unit cell of the crystal contains three crystallographically independent phenol molecules. These are connected via O-H...O-H hydrogen bonds (Fabio et al, 1995). One could assume similar hydrogen bonded dimeric...
Figure 1 NICl(CH₄) mass spectrum of 4-hydroxy-3-methoxy benzaldehyde

![Mass Spectrum](image)

Figure 2 Hydrogen bonded trimer of vanillin

![Hydrogen Bonded Trimer](image)

Figure 3 Hydrogen bonded dimer of vanillin

![Hydrogen Bonded Dimer](image)

(Figure 3) and trimeric (Figure 2) structures for vanillin. The central molecule could have greater stretch than the other two in the trimeric form. Here central molecule acts as both donor and acceptor for hydrogen bonding. As a result one molecule of water is eliminated and the ion peak is observed at m/z 438. The hydrogen bond energy decreases due to the strong covalent bond between oxygen and two aromatic rings. The loss of one molecule of vanillin gave [dimer-H₂O] ion peak at m/z 286 (Scheme 1). The NICl(CH₄) spectrum also shows ion peaks at m/z 303 and 302 due to the presence of [dimer-H] and [dimer-2H] respectively. This is probably due to gradual deprotonation of vanillin dimer (Figure 1). The other most abundant ion peaks are at m/z 220 and 204. The base ion peak was detected at m/z 131 probably due to fragmentation of m/z 286. The ion peak at m/z 286 could be alternatively formed due to loss of one molecule of water from the dimer.

NICl(Cl) mass spectrum of 4-hydroxy-3-methoxy benzaldehyde (Vanillin).

The negative-ion Chemical ionization (NICl(Cl)), mass spectrum of vanillin is reported in Table 1. The [monomer-H] was observed at m/z 151 but molecular ion peak was absent. The spectrum appears to be completely different from the NICl(CH₄) mass spectrum having fewer numbers of ion peaks. The ion peaks at m/z 189 and 187 correspond to [monomer³⁷Cl] and [monomer+³⁵Cl] respectively with characteristic isotopic pattern. The base ion peak at m/z 187 is due to the adduct formation between monomer and ³⁵Cl involved in hydrogen bonding. (Madhusudanan et al., 1990). Similar
Table 1: NICl(CH₄) and NICl (Cl⁻) mass Spectra of 4-hydroxy-3-methoxybenzaldehyde

<table>
<thead>
<tr>
<th>Ion*</th>
<th>NICl (CH₄)</th>
<th></th>
<th>NICl (Cl⁻)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/z</td>
<td>rel. int.</td>
<td>m/z</td>
<td>rel. int.</td>
</tr>
<tr>
<td>[trimer-H₂O]</td>
<td>438</td>
<td>11.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dimer-H]</td>
<td>303</td>
<td>18.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dimer-2H]</td>
<td>302</td>
<td>93.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dimer-H₂O]</td>
<td>286</td>
<td>82.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dimer-H₂O-66]</td>
<td>220</td>
<td>62.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dimer-H₂O-82]</td>
<td>204</td>
<td>35.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[monomer+³⁵Cl]</td>
<td></td>
<td></td>
<td>189</td>
<td>34.94</td>
</tr>
<tr>
<td>[monomer+³⁷Cl]</td>
<td></td>
<td></td>
<td>187</td>
<td>100.00</td>
</tr>
<tr>
<td>[monomer-H]</td>
<td></td>
<td></td>
<td>151</td>
<td>61.29</td>
</tr>
<tr>
<td>[m/z 286-(152+H)]</td>
<td>133</td>
<td>02.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[m/z 286-(152+2H)]</td>
<td>132</td>
<td>10.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[m/z 286-(152+3H)]</td>
<td>131</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme 1 NICl(CH₄) fragmentation of m/z 438

m/z 438 (11:73)

m/z, 286 (82:77)

m/z, 133 (21:2)

m/z, 132 (10:53)

m/z, 131 (100)
observations were reported for NICl(CI) spectra of a number of cyclic diols. (Winkler and Stahl 1979).

CONCLUSIONS

The Negative Ion Chemical ionization (NICl)CH₄ mass spectral study demonstrates that the Crystal structure of vanillin probably consists of hydrogen bonded trimer and dimer. Further supports came from the Negative ion chemical ionization (NICl(Cl) mass spectrum, where [monomer-H] at m/z151 and adducts with isotopic chloride ions at m/z, 189 and 187 respectively were detected. Here trimeric and dimeric structures are not possible for vanillin due to the presence of chloride ion capable of forming strong hydrogen bond.

ACKNOWLEDGEMENT

The author thanks the Head, Regional Sophisticated Instrumentation Centre at Central Drug Research Institute, Lucknow, India for providing technical assistance for recording NICl(CH₄) and NICl(Cl) mass Spectra.

REFERENCES

