HUMAN ONCHOCERCIASIS IN IMO RIVER BASIN: A PREVALENCE SURVEY

EVANGELINE OPARAOCHA, ALEX B. ODAIBO, and BETRAND E. B. NWOKE

(Received 13 March 2000; Revision accepted 15 December 2000)

ABSTRACT

In a two year study of ten communities in Imo River Basin, Nigeria, 1126 (48.4%) of 2278 persons examined were positive for microfilariae of *Onchocerca volvulus*. Of the 1442 females examined by skin snip, 642 (44.7%) were infected while 484 (57.9%) of the 836 males were positive for onchocercal microfilariae. Male subjects had significantly (P<0.001) higher infection rate than their female counterparts. Prevalence of human onchocerciasis was found to increase with advancing host age and reduced annual income level and occupations which expose subjects to vectors. Fishermen (62.7%), and Farmers (57.7%), were the most affected occupational groups. The epidemiological significance of these findings in terms of a more comprehensive chemotherapy with ivermectin tablets and community awareness of the disease etiology were highlighted.

Key words: Onchocerciasis, Prevalence, survey, Imo River Basin.

INTRODUCTION.

Onchocerciasis, a chronic parasitic disease is a major public health problem in most tropical and subtropical countries of the world. About 18 million people are infected with the disease and 99% of these live in Africa (WHO, 1996). As a result of the serious adverse socio-economic impact and the high morbidity rate associated with the disease, the World Health Organization in collaboration with other United Nation agencies started and active onchocerciasis control programme in 1974.

In Nigeria the Federal Ministry of Health in conjunction with some non-governmental agencies have commenced a well planned programme for the control of onchocerciasis through ivermectin treatment. In view of the wide spread and high prevalence of the disease in the country, there is need for proper, thorough and detailed epidemiological study of all endemic communities, if the control programme is to achieve its desired aim. To this end, a lot of work have already been carried out on the epidemiology of onchocerciasis in this country (Edungbola, 1982; Edungbola & Asalu, 1984; Nwoke et al; 1989, 1991; Akogun & Onwuliri 1991; Anosike & Onwuliri 1984, 1995). However, due to the vastness of the country, her huge population and the numerous river courses (breeding sites of vectors), many endemic communities are yet to be identified and/or studied and this include some communities in Imo River Basin, Nigeria. This study was aimed at making a detailed survey of the prevalence and distribution of onchocerciasis in these communities. The data will be of immense benefit in the evaluation of the control intervention already going on in the country. Ways through which the distribution of ivermectin will be enhanced will also be highlighted.

MATERIALS AND METHODS

The study area: The study was conducted in the rainforest zone of the Imo River Basin lying approximately between latitude 5° 30' - 50° 47'N., and longitude 7° 15' - 70 35'E. The study area has an estimated area coverage of about 175sqkm. Two thickly populated local government areas were surveyed. These were - Ikita Ubome Local Government Area of Imo State and Umunna North Local Government Area of Abia State, Nigeria. The Imo River formed both the state and local government boundaries for these two areas. Together with its tributaries like Acha River to the West, and Eme River to the East, adequate water supply is maintained for the inhabitants who are mostly farmers. Local crops cultivated include yam, rice, melon, maize, cassava, okro, groundnut and fluted pimientos.

The vegetational structure varies from tropical rain forest at the River Bank to derived savanna at the hinter land. The climate is tropical with temperature range of 19˚C - 38˚C, and mean annual rainfall of approximately 2500mm. The average relative

EVANGELINE OPARAOCHA: Department of Biological Sciences, Federal University of Agriculture, Umudike, Nigeria
ALEX B. ODAIBO: Zoology Department, University of Ibadan, Ibadan, Nigeria
BETRAND E. NWOKE: Department of Biological Sciences, Imo State University, Owerri, Nigeria
humidity is about 30% and may reach up to 85% during the rains. Most part of the area is hilly.

Parasitological Examination

Two thousand, two hundred and seventy-eight subjects from 7 communities in Ihiite-Uboma L.G.A. and 3 communities in Umudia North L.G.A. were examined. All the ten communities were located at distance of 1 km-6 km from fast flowing rivers and streams. Name, sex, age, occupation and distance of residence from the nearest infection foci for each subject were recorded. Subjects were equally asked to give an estimate of their annual income judging from sales of farm products or/and salaries. Thereafter the sites to be sniped were thoroughly swabbed with methylated spirit. Two bloodless snips were taken from the left and right liana cres of each subject with a Cornea-scleral punch with a 2 mm bite. The scleral punch was completely sterilized through flaming before using it on another person to avoid transmission of infectious disease agents from one person to another. Each skin snip was placed in microtitre plate containing three drops of 0.85% physiological saline. Filled wells were later covered with adhesive tape to prevent evaporation and spillage. These were incubated at room temperature for 24 hours after which they were fixed with formalin solution (40% formaldehyde solution) by addition of a drop of solution per microtitre well. The biopsies were examined using dissecting microscope and positive ones were identified, recorded and microfilariae counted. Some of the biopsies were later randomly collected, dried, fixed in methanol and finally stained with Giemsa statin. These were observed under oil immersion objectives to confirm the species of microfilaria morphologically.

RESULTS

Prevalence of Human Onchocerciasis By Communities:

Ten communities were surveyed in Imo River Basin (Table 1). Of the 2278 persons examined, 1226 (43.4%) were infected. Highest infection rates of 65.8% and 62.2% were recorded in Okata and Uzinomi communities respectively, while Umule (35.1%), had the least. Prevalence varied significantly (P<0.05) among the communities.

Sex-Related Prevalence of Human Onchocerciasis:

The sex-related prevalence of human onchocerciasis (Table 2), shows that of the 835 males examined, 484 (57.9%) were infected. The highest prevalence was recorded in Abueke (65.3%), followed by Uzinomi (68.7%) and Okata (66.6%), while the least was in Umuoma (28.5%). On the other hand, 642 (44.7%) of the 1442 females examined were infected. Okata (65.3%), recorded the highest, followed by Uzinomi (58.7%) and Abueke (50.4%) with Ikwoegwu having the least (30.0%). More males (57.7%), were infected than females (44.7%) (X² = 37.9; P<0.001) in the study area.

Age-Related Prevalence of Human Onchocerciasis:

Table 3 illustrated the prevalence and distribution of human onchocerciasis among the different age groups. Subjects within the age group of 50 and above had the highest prevalence (56.9%) while those of 20-29 years of age had the least (32.9%). There was a fairly steady increase of prevalence rate with advancing host age (Table 3). A 2-way ANOVA revealed that prevalence varied significantly (P<0.05) among the age groups.

Occupation Related Prevalence of Human Onchocerciasis

The prevalence of human onchocerciasis did not show uniformity among the various occupational
categories (Chi-squared test = 100.533; df = 4; P<0.001). Fishermen/White Sand diggers and farmers were the most affected occupational groups, recording prevalence of 65.7% and 57.7%, respectively. Students (36.5%), and civil servants (35.0%) were all moderately infected (Table 4).

Annual Income Level Related Prevalence Of Human Onchocerciasis:

Annual income level-related prevalence presented in Table 5, indicated that subjects with annual income of between N50 - N10,000 had the highest infection rate (56.0%), while those earning N50,100 and above recorded the lowest infection rate (34.9%). Variation in prevalence rate within the different groups was significant (X² = 40.12; df = 3; P = 0.001).

DISCUSSION

The present investigation confirms the existence of human onchocerciasis in communities within the Imo River Basin of Ihitte Uboma and Umuahia North Local Government Areas of Imo and Abia States, respectively. Going by the accepted definition of levels of endemicity outline by WHO (1966), the area is meso-endemic for onchocerciasis. The prevalence is higher than those of those obtained by earlier workers (Nwoke 1986; Nwoke et al. 1994; Anosike and Onwuliri 1994, 1995). According to Edungbola et al. (1993), at that level of endemicity, the communities will experience the highest risk of blindness with the highest morbidity prevalence particularly among the economically active adults. The hyperendemic levels of endemicity observed in O

Okata, Uzinomi and Abueke communities is not surprising since these areas have in common, fast flowing rivers, with majority of the people (males and females) being farmers. The farming activities carried out near the water courses expose the people to much contacts with infective flies. Thus according to De Soel et al. (1991), onchocerciasis is a local disease depending on the presence of specific ecology, including among others, fast flowing waters and characteristics of the vectors involved in the transmission.

The prevalence of human onchocerciasis was significantly higher in males, adults, fishermen and farmers than in females, adolescents, and those of other occupational groups respectively. This is line with the observations of some earlier workers (Onwuliri et al.; Akogun & Onwuliri, 1991; Anosike, 1992). People whose daily activities expose them to frequent visits to water bodies are more exposed to greater number of man-vector contacts. In most villages, farming activities are undertaken on a greater scale by the males subsequently they become more infected. Adults similarly have higher infection rates because farming and other activities requiring visits to water bodies, are maintained throughout life in rural communities. The rise in prevalence with increasing host age is therefore not unexpected. Thus Nwoke (1986) and Onwuliri and Anosike (1989), among others have shown that onchocerciasis infection rate increases gradually with increasing host age in various bio-climate zones in Nigeria. Annual income level related-prevalence rate was found to increase with reduced annual income level. Aside from variation in occupation, behavioural differences between the high and low income earners may have accounted for the marked differences. In rural communities-like the surveyed area, high income earners hardly spend much time in their farm lands. Most of them hire labourers to work for them. This attitude reduces contacts with the vector fly. Probably too, high income earners go for treatment earlier to check infection progression from the on-set. A study on the socio-economic impact of onchocerciasis carried out around this same time showed that most of the poor farmers neglected their plight and refused medical treatment because of lack of fund (Oparaocha, 1999).

The present result indicates a pronounced human onchocerciasis problem among the inhabitants of Ihitte-Uboma and Umuahia North Local Government Areas. Although the control programme through mass ivermectin distribution has started in these areas, more effort is needed in the area of co-ordination and/or integration of the local people so as to achieve proper coverage and sustained distribution of the tablets. Health education need to be incorporated into the programme so as to achieve a maximum success. Another survey made later in this area showed that the treatment coverage was very low (Oparaocha, 1999). The people are still very ignorant of the etiology, symptomatology and the complications of the disease. Mobilization, publicity and community co-ordinated distribution of the drug, as well as a planned health education for the masses must be emphasized.

REFERENCES


