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Abstraet
it is well known that the optimum of a Linear Programming problem occurs at an
extremum point of the feasible region. This paper considers some other optimality
conditions for the existence of optimizers of Linear Programming (LP) problems based on
thé principles of optimal experimental design. It is shown in this work, for example, that;

(i} The optimizer of an LP Problem occurs at a point, which the d-function is
' minimum within the feasible region.
(i) The d-functicn at the end point of the kth iteration is less than the d-function at
any other point within the experimental space.
{iii) The d-function at the minimizer x* is the maximum of the minimum d-functions

for k different iterations., This is a first-order necessary condition for the
existence of a minimizer of an LP problem.

Key words: Linear Programming, d-function, Linear Exchange Algorithm, Optimal
Experimental Design.

Introduction

Linear programming {Li*) problems are characterised by a linear objective function
in n non-negative variables constrained by a set of m {usually, m<n) linearly indeperident
equations, These constraints which may be linear equality or linear inequality define a
convex feasible region. ! i '

We remark that since the objective function of an LP problem is non-stochastic,
we shall throughout this work define, x "M'(£:), xeSx to be the d-function rather than
varianca of the objective function; Sx is the column space of the information matrix at
the kth iteration; i.e d{f(x)) = dix,En)= X "M E)x, xeSx X where &n is the design
measure of the exact design and X is the feasible region.

We further remark that in developing the optimality conditions, some restriction
has been placed on the objective function f(x); ie f(x) > 0, xe X. Thus, LP problems for
which f{x) can change @ign from positive to negative or from negative to positive within
the feasible region are not covered here.

Each of the optimality conditions discussed in this paper is based on the Linear
Exchange Algorithm {LEA), itself a line search algorithm, for solving Linear Programming
Problems developed by making use of the principles of experimental design. The basic
steps involved in the LEA are given as follows:

Sy @ at the boundary of X, take o support paints for the initial design matrix
Xox = (X1, X2, wevey Xmk oo, ; Xnok )
such that det (XoXox) 20 and n + 1< no 6%n (n+ 1)

'Sz : make a move in the gradient direction to the point

Xk = Xk-0ok@, K = 1,2, ..., %ek = Xok 1/n0

g =lofx) " . i=1,2..,n

- oxi

Olok = mfn o = min | a Xok ~ bi si=1,...m
i i a"g
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Sa: if xk = x*, the minimizer, stop otherwise replace xmk in Xox with x« ; i.e define

Xokwa 1y = {X1k, X2k, o0p Xk , .00, XoOk)
and Ron+ 1 = Xow+n1/no, where xmk is such that f(xm) > f(xi), i = 1, 2, ..., no; i # m.

S4: set k+ 1 = k and return to step Sa.

The sequence terminates whenever

fixke) = fx)] < e, e >0
{f{xc}|

or | xor Mok xor - xe M x| < 8, 8 > O;

My is the information matrix at the kth iteration. That is, the sequence terminates
whenever the difference between the d-function at the starting point Xo« and the d-
function at x«, the end point of the kth iteration is smali; i.e. no significant move is made
from Xo« to x«. A detailed discussion on the operation of this algorithm is given in Umoren
(2000). ‘

In developing the optimality conditions, we require the following lemma that is
useful in obiaining the inverses and determinants of information matrices for line search
algorithms.

Lemma 1.1: Let B = A + uv’ be an m x m matrix such that det{A) = O, u and v are m
component non-zero vectors, then

B' = AT~ AT {1+ v Au)'VAT (1.1.1)
and R
det(B) = det A(1 + v A’y (1.1.2)
The above lemma in linear algebra has been referred to or proved by many authors 5

including Rao (1965), Raghavarao (1971), hence the proof is here omitted.

Lemma 1.2: Given the line search equatipn

Xiet = x5~ pidi; didh = 1
Where o, and p; are respectively the direction of search and step length at the jth
iteration.

Let M, Mi+1 € M™ be information matrices at the jth and (j-+ 1)th iteration
respectively, M™" is the set of all information matrices. Then

i

(i) det(M+1)
det({Mj.1)
det(My)

@ Mito= Mty -z zi = no'? pi(1 + wi) Mg

det(M}{(1 + nopo’di M 'dj) or
1 4+ wi wj = nopo’d; My 'di

]

Proof: (i) At x;, the column space of the design matrix X, {(no x n) is spanned by the
vector xi = (X, Xi2, ... ,Xn); i.€ X € L{Xj). Similarly at x4+ the column space of the design
matrix Xi+1, {no x n} is spanned by the vector xj+1 = {Xj+1.1, Xj+2.2,..,Xi+1a). Therefore

Xj+1 = {(xp -pidit, Xjz - piadi2, ... , Xin = Pindin) and
Xi+1 = Xi-pi"1di;  di” = {djyr, ...,din)
Xi+ 1 Xj+1 = Xi" X - piXi " 1di -pidi1 "X + pZnodidi’
= Xj'Xj + nopjzgjgj' o Xi'1 =0
f.,e Mt = M; + nop;zg_;g;' (1.2.1)
and
det{Mj+1) = det{Mi}{1 + nop;zg;'Mj"gj)
or
detiMj+1) =1+ wi; w; = nop;zg_;'Ml"gi
det{M))

{ii) On application of (1.1.2) in (1.2.1} we have
Miih = M~ M 'nopildid, My’
T + nopd; Mg
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= M= Mi'nop’di (1 + nopi’di M di)'diMy!
= M = [no" pil 1 +wi) M 'd; 1T no™? pil 1 +wi) 2y di]
= M'-zz" ; zi = n'" pi(1+w)"?M'g

Definition 1.3: Let f{x) be the objective function of an LP problem and let x* be the
optimizer {maximizer or minimizer), x eX. Then

f(x*) { 2 f(x), if f{x} is to be maximized
<

fix}, if #{x) is to be minimized

Pazman (1986) has established a functional relationship between the square of a
re§fp'bnse function and the variance of the function. That is, the variance of the BLUE for
a linear functional h defined on Q is

Varfh) = viMys» = u'M'u

= max[ {u'a> ,aeR, Ma=0 (1.1.4)
a'Ma
= max {2u’a~a'Ma, a e R"} {1.1.5),

if h{w) = u’a, w € Q, where va € L{M) and u = Mvrh = vh = M'u.

Correspondingly, since the objective function of an LP problem, namely f{x) = ¢'x is a
linear functional, the relationship between its square and its d-function can be derived
frorn (1.1.4) and {1.1.5) as :

df(x) = x"M'x = max{ _@___5)2 , ¢ e€R", Mc=0 }
c Mc
= max{ 2{x) ,ce R, Mc=0 }
c Mg {1.1.6)
= max {2c "x - ¢ Mg, ¢ e R"} {1.1.7)"

2.1 Optimality Conditions
it is well known from the point of view of mathematics that, at the optimizer x*, the
gradient of the objective function vanishes; i.e

ofix} = 0, 1=1,2,...,n
o
From definition {1.3), if x* is a minimizer and f(x} =2 O, then
fix*) < fix} o fx*) = x) {2.1.1)

Let us now lay a foundation for the development of the optimality conditions. We first
show that in the LEA, the sequence moves from a point of relatively high d-function to a
point of lower d-function.

Thearem 2.2: Given the line search sequence
X = Kok - aoxg; Xok = Xox 1/no
Then -
X Mt € Xox Mk "Xok, Xk € Sx
L.
Where xx and M« are the end points and information matrix at the kth iteration and S« is
the column space of the information matrix at the kth iteration.

Proof: x« = ok - Olokg
= xx "Mi ' x«

1]

Txok - aokg) "M " {Rok-ctokg)
Kok * M ok - 200%oxMi'g + ook’ "Md'g
= ok Mk 'Xok - 2¢ ok + ¢ Mg

i
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on setting aokMk"g_ = ¢, the coefficient of the objective function.
R.H.S. = %ok Mok > 2¢ “Rok - ¢ “Mke
=  Xo ‘Mc'xek = max {2¢ "Xox - ¢ 'Mkc} 2 0

from {1.1.5). Therefore,
X Mk 'k < Xok "M Rox

We now show that if the starting point of the sequence is a weighted average, then the
value of the objective tunction at the kth iteration is less than its value for any other x €

Sx c X. But before that let us state the following lemma that is fundamental to the proof
of the theorem that follows.

Lemma 2.3: Given

2(_3'Mk"12(_i < 2(_3'Mk'1_)5i + Xi, Xj € Sx
Then

Px) £ fix) < fix) < f(x)

where Mk is the information matrix at the kth iteration.

Proof: x Mi'xi < % Me'x
= M%) < tr(Mexixi )
= X% < X%
= fPx) < i) o f(x) < fix)

Theorem 2.3: Given the line search sequence

Xk = Rok - Qokg  ; Xok = Louxi, o =20; Xou = 1
and xi's are independeént. Then

fxx) =f{x), x € S«

Proof: The proof is by induction

Setno = 2 ,
Xiow = axt + (1 -uwxe, az20
From Theorem 2.2
dk = xc Mi'xe < diok = Kok Mic Rox
dioe = o2 Melxr + (1 - a)® x2"Me'xz
On setting xi " M'xi = di, i = 1,2, we have
dox = old + (1 - a)?d2
Choose o to minimize dok; i.e.
odiox = 2adi + 2(1 -a)d2 =0
Ja
o = d2
di + dz
Therefore
diok = d2 2dr + di % da
[d + d2 di + d
= didz (di+ d2) = did2 < di, d2
(di+ d2)? di+ d2

Hence dk < di, d2

From lemma 2.3 the above inequality implies
fix) < f(xa), f(x2)

Setno = 3
Define x12 = ax1 + {1 - a)x2, andXzo« = X2 + (1 - Plxs, B 20.
Then
daox = B2z + (1 - PB)ds
The value of B which minimizes dzox is B = ds . Therefore

dw2 +ds
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daox = ds 2di2 + di2 2 ds
diz + da diz + ds

] di2d3 (d3+ d12)
{di2+ d3)?

it

dizds < diz, da
diz+ da

it

But daok < diz = ol 4+ {1 -a)?dz2 < di, d2
Hence,
dook S diy, d2, d3 C'ik < di, d2, da

From lemma 2.3, the above inequality implies
fixx) < fix1), f{xa), f(x3)
" “Hence, by induction
flad < f(xa), flxa), ..., f{xno)

We now show that if the value of the objective function is minimum at x. within the
experimental space Sx, then the d-funcion at x« is minimum for all x € Sx.

Theorem 2.4: diven a line search equation
X = Kok - ookg 5 Xox = 2auxi, 20

Then -
kO M S xOMcx, x € S o X
Proof: Define fix) = ¢'xx < fx) = xx’cc x« and
flx) =c¢'x << flx) = x’cc'x

From theorem 2.2,
fxe) < f(x) < fixa) < f4x), x e S«

= X eC X« € x'ec’X

= cxxc < e'xx’e

= XXk < xx’

= trixxk M) < tr(xx M)

= xMdxk < xMe'x, x € S«

Having in view the fundctional relationship between the square of the objective function
and its d-function {see 1.1.6) we give the following theorem which states that the
minimizer of an LP problem occurs at the point where the d-function is minimum within
the feasible region.

Theorem 2.5: Given M- = lim Mk, where M- is the information matrix at the point
k-
of convergence of the sequence. If x* is-a minimizer, then
x* Mx* < XM x e X
and if x* is a maximizer
X* MY 2 XM x e X
Proof: Let f(x*) be represented by a linear functional x* ‘c. Then
f2x*) = x*"ce'x*; fAx) = x’ce’x
The s iore
Fiat) < f(x) & x* "ce’x* < x7ce’x (i)

Define f{x) = Xc, where X is the design matrix, so that ¢ = (X X)X {f(x).
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Then (i) becomes
X* IO XY 0 7 (%) X(X’X)"]x < XUX X)X ﬁZ‘)i (x) X(X " X)x
x* (XX x* < x XX T
“MTx* < x"M!
< M

= X
* -1 ~
= I\/Ig x ,x e X

i
x*
Similarly, f4x*) 2 4(x)

= x* 'MIx* 2 x "M x

x e X

We rniow state a first order necessary condition for the existence of optimizers of LP
preblems. That is, we show that if the d-function at the end point of the kth iteration is
less than the d-function at any other peint within the experimental space, then the d-
function at the minimizer x* is the maximum of the minimum d-functions at k different
iterations. But before that, let us state a lemma that is fundamental to the proof of the
theorem that follows:

Lemma 2.6:  Given the line search sequences
Xk = Xok - doxg, Xox = Xox " 1/no

and
Keat = Koty ~ G0k 1g, Xotks 1y = Xok *1/no

Me = Misa. Tn&ﬂ
X k+1Mk+1Xk+1 2 X M X«
Xk, Xk+1 @and M, Mks1 are respectively, the end points and information matrices at the kth

and {(k + 1)ith \terat\ons

Proof: By the exchange rule Xk+1 < Xx.

Let

Xirt = Xk = Uk
Then

X “etMih e = Mu.) + 2_gk'M]<'+1gk + Uk’ i 1
On setting ¢ = ZITkMkH we have

x L+1M\_<+1Xk+1 = Mk+1Xk + 2¢ " xx + ¢ Mg

RHS = x’ Mi(ug(_k 2 2¢ Xk - ¢ Mk+1c
= max {2¢ xc-¢ Mg, ceR'}20, from1.1.5.

Therefore
bt ke tMRh 10001 2 X "M 1
= X ke 1M X001 2 200 M X

Theorem 2.6: First — Order Necessary Condition.
Given x* to be a minimizer of an LP problem Then,
x* M+ 'x* = maxmin{x "M, x € X}
k

is a first — order necessary condition to be satisfied by x*; M- is the information matrix
at the point where xx converges to x*, X« and M. are the end point and information
matrix at the kth iteration.

Proof: Letlim Mk = M-
k—y0

ieMi=2M22 ....... > M- and let
=M + dids”, dz20

From lemma 1.2.
M = M - vieve 7, v = no' coddl +widV2Midy, wk = noorox®di” M di
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Xk "M X = XM - vivi I
= XCOMTRe - Xk v X
= X M xx = Xk "M Xk - xx VAV Xk
= XM 2 X M e ST

since x« “vive “xx 2 0
= X* MR > e M x

since, trom lemma 2.6 x k1M 1xe1 2 M x , then

X¥ MU = max{xe M) -
But from Theorem 2.4

XM = min{xc Me'x), x eS.
Therefore

X*TMIx* = maxmin{x Mc'x, x e X}.
Using the fact that
min f(x) = max(-f{x)} we have

x* ‘Mlx* = minmax{xx Mc'x, x e X}

k

as a first -~ order necessary condition to be satisfied for the existence of optimizers of LP
problems. That is, the optimizer of an LP problem has both the maxmin and minmax
properties, which could be reached either through minimization or maximization.

3.0 Conclusion: Illustration

The optimality conditions considered in this paper are here demonstrated with an
Mustration. It is here reminded that the development of the optimality conditions are
based on the Linear Exchange Algorithm (LEA), a method of solving LP problems.

-

Applying the basic steps of the LA fto the problem

minimize f{x}) = 3x1 + 2x2
subject 1o 2x1 + xa > 6
Xt +x2 24

X1 4+ 2x2 2 6

xi,x2 2 0

{[see Umoren, 2000}, we give table 3.1 for k = 1,2,3,4 iterations.

Tabic 3.1: d-functions at ihe support points and end points for four different iterations of the Linear Exchange Algorithm

X1 X2 di(x,&n) X1 X2 da(x,&n)
1.00 | 4.00 0.2625 1.00 4.00 0.3152
3.00 |1.50 0.3124 3.00 1.50 0.2752
4.00 | 1.00 0.4252 2.24 1.88 0.2861
xi | 2.24 L 1.88 0.2382 x2 | 1.85 2.31 0.2695
xo1 | 2.67 |2.17 0.3309 | %2 | 2.08 2.46 0.3245
X1 X2 da(x,&n} X1 Xz da(x,En)
1.00 | 4.00 0.3620 2.24 1.88 0.3428
2.24 |1.88 0.3256 1.85 2.31 0.3228
1.86 | 2.31 0.3694 "~ 11.65 2.70 0.3344
xa | 1.66 | 2.70 0.3204 x: | 1.87 2.27 0.3216
%3 [1.70 |[2.75 0.3361 %oa | 1.91 2.30 0.3331
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Using the results in table 3.1, we notice the following:
{i) The d-function at the end point of the kth iteration is minimum compared to the
d-functions at the support points of the d'esign matrix.
ii) The sequence | x« Mc'x|” is non-decreasing; i.e the d-function at the

k=1

minimizer x« = x* is the maximum of the minimum d-functions for the k different
iterations.
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