MINERALOGY AND DIAGENESIS OF THE MFAAMOSING LIMESTONE, SE. NIGERIA

NSE ESSIEN and ANIEKAN EDEET

(Received 31 January 2000; Revision accepted 28 May, 2001)

ABSTRACT

Mineralogical and diagenetic studies of the Mfamosing Limestone show that it is mineralogically stabilized with calcite (62.71 - 49.58%) as the dominant mineral and quartz (15.86 - 0.55%) as the subordinate mineral. The diagenetic fabrics, events and environments include dissolution, dolomitization, isopachous cementation, porosity occlusion and rejuvenations and precipitation. Carbonate diagenesis indicates physical and chemical transformation of the limestone from the time of deposition through burial under vadose, phreatic, mixed, shallow and deep conditions to uplift and karst development.

KEY WORDS: Mfamosing, Mineralogy, Diagenesis.

INTRODUCTION

The Mfamosing Limestone is located on the Calabar Flank in SE Nigeria (Fig. 1). It is arcuate in shape and rims the Precambrian Oban Basement Complex. This carbonate body was deposited during the first marine transgression in the South Atlantic in Mid-Albian times.

The primary objective of this paper is to extend our knowledge of this carbonate body beyond the Mfamosing type section, which hitherto has received considerable attention in biostratigraphy (Dassauvagie, 1968, Fayose, 1986, Ramanathan and Kumaran, 1981), depositional environments (Reijers and Petters, 1987; Nair et al, 1982, Akpan, 1990), diagenesis (Otal and Koch, 1990) and chemical analysis (Ekwueme, 1985). To achieve the above objectives, mineralogical and petrographic examination of the limestones samples were carried out. This allowed for the determination of its mineralogical constituents and evaluation of diagenetic textures, events and environments. Also, attempts have been made to relate its burial history to the diagenetic imprints observed.

METHODOLOGY

The study involved field sampling as well as petrographic and mineralogical analyses. Sampling was undertaken along the depositional strike which covered a distance of about 135km. Major sample locations included, Mfamosing (type section, Reijers and Petters 1987), Odukpani, Okeyong Usang Abasi, Ikot Okpora, Agoi Ibani, Etankpipi, Agbung and Obarckai (Fig. 1).

The Zeiss petrologic microscope was used to study both polished and thin sections. Measurements were made using a calibrated eye piece and a stage micrometer. Standard staining method of Katz and Friedman (1965) was used to distinguish between iron-poor and ferroan calcite, iron-poor and ferroan dolomite.

Mineralogical studies consist of subjecting composite (channel) samples to XRD analyses. Characteristic XRD peaks were interpreted using Brindley and Brown (1980).

REGIONAL GEOLOGY

Structurally, the Calabar Flank represents a part of the foundered southern Nigeria continental margin (Fig.1). It is dominated by a system of NW-SE trending step fault that resulted in the formation of a horst (Ituk high) and graben (Ikang Trough) structure. The Ikang Trough for most part of its depositional history was the site of active clastic sedimentation while the Ituk high was a stable carbonate platform where about 450m of the Mfamosing Limestone accumulated (Reijers and Petters, 1987).

Sedimentation started in the Calabar Flank with the deposition of fluvio-deltaic clastics of probably Aptian age on the Precambrian Crystalline basement complex, the Oban Massif (Fig. 1). These sediments belong to the Awit Formation (Adeleye and Fayose, 1978).

The earliest marine transgression into the Calabar Flank and the Benue trough occurred in the Mid-Albian times with the deposition of platform
carbonates of the Mfamosing Limestone. This limestone unit was deposited in a variety of depositional environments and displays microfacies types ranging from algal stromatolitic/condoidal boundstone, oolitic-peloidal packstone, gastropod bioclastic grainstone to highly fossiliferous packstone (Essien, 1995). The limestone unit is underlain by the Awi Sandstone.

The Mfamosing Limestone is overlain by a thick succession of black to grey shale, the Ekenkpon Shale. This thick shale unit is characterised by minor intercalations of marl, calcareous mudstone and oyster beds. The Ekenkpon Shale is a product of two transgressive cycles in the Late Albian-Cenomanian and Late Turonian.

The Ekenkpon Shale is overlain by a thick marl unit, the New Netim Marl (Petters et al., 1995). The marl unit is nodular and shaly at the base and is interbedded with thin layers of shale in the upper parts. Foraminiferal (Nyong, 1985) and coccolith evidence (Perch-Nielsen and Petters, 1981) suggest Early Coniacian age for this marl unit. The New Netim Marl is overlain by carbonate rich dark grey shales of the Nkporo Formation (Late Campanian – Early Maastrichian) (Reynert 1965). This shale unit is interbedded with thin bands of marlstones and gypsum.

Table 1: Carbonate Mineralogy of the Mfamosing Limestone at Different Localities

<table>
<thead>
<tr>
<th>S/NO</th>
<th>Localities</th>
<th>Sample No.</th>
<th>Calcite (%)</th>
<th>Quartz (%)</th>
<th>Albite (%)</th>
<th>Oligoclase (%)</th>
<th>Feldspar (%)</th>
<th>Loss in Ignition (LOI) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mfamosing</td>
<td>MF 1</td>
<td>56.42</td>
<td>2.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41.36</td>
</tr>
<tr>
<td>2.</td>
<td>"</td>
<td>MF 2</td>
<td>53.63</td>
<td>7.90</td>
<td>0.42</td>
<td>-</td>
<td>-</td>
<td>38.47</td>
</tr>
<tr>
<td>3.</td>
<td>Odukpani</td>
<td>OD 1</td>
<td>62.72</td>
<td>0.70</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>36.08</td>
</tr>
<tr>
<td>4.</td>
<td>"</td>
<td>OD 2</td>
<td>56.66</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>42.79</td>
</tr>
<tr>
<td>5.</td>
<td>Okoyong</td>
<td>OU 1</td>
<td>57.48</td>
<td>1.67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40.85</td>
</tr>
<tr>
<td>6.</td>
<td>Usang Abasi</td>
<td>OU 2</td>
<td>49.94</td>
<td>3.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41.46</td>
</tr>
<tr>
<td>7.</td>
<td>Ikot Okpora</td>
<td>IKO 1</td>
<td>53.88</td>
<td>4.72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41.40</td>
</tr>
<tr>
<td>8.</td>
<td>"</td>
<td>IKO 2</td>
<td>53.90</td>
<td>15.86</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.24</td>
</tr>
<tr>
<td>9.</td>
<td>Agoi Abami</td>
<td>AB 1</td>
<td>49.58</td>
<td>12.65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37.77</td>
</tr>
<tr>
<td>10.</td>
<td>"</td>
<td>AB 2</td>
<td>53.75</td>
<td>6.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40.14</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td></td>
<td>62.72</td>
<td>15.86</td>
<td>0.42</td>
<td>0.5</td>
<td>-</td>
<td>41.36</td>
</tr>
<tr>
<td></td>
<td>MIN</td>
<td></td>
<td>49.58</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.24</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td>54.72</td>
<td>6.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>39.06</td>
</tr>
</tbody>
</table>
The Nkporo Shales cap the Cretaceous succession in the Calabar Flank and is overlain by a pebbly sandstone unit of the Tertiary Benin Formation.

CARBONATE MINERALOGY

A summary of the carbonate mineralogy of the limestone under investigation at various sampled localities is as shown in Table 1. Typical XRD patterns obtained from some sampled localities (I kot Okpors, Odokpani and Mfamosing) are as shown in Fig. 2.

Calcite is evidently the dominant mineral in the Mfamosing Limestone. The non-carbonate constituents are mainly quartz and some traces of feldspar. The average amount of calcite recorded in the samples is about 54.72%, while that of quartz is 6.10%. 39.06% is the average value recorded on loss on ignition. The quantity of calcite in this carbonate body ranges from 62.72% in pure limestone at Odokpani to 49.58% in the sandy variety obtained at Agi Ilaami. The amount of quartz varies from 15.86% to 0.55% while the loss on ignition ranges from 42.29 to 30.24%.

Thin section turned red on exposure to a mixture of Alizarine red S and K ferricyanide mixture. This indicates that the dominant calcite in the Mfamosing Limestone is of ferroan calcite variety.

DIAGENESIS

The various diagenetic fabrics, processes and events observed in the Mid-Albian Mfamosing Limestone are inferred from diagenetic imprints based on petrographic studies. Evidence of early stages of diagenetic processes in this carbonate body includes: micritization, isopachous/syntaxial rim cementation, leaching, generations of cements, dissolution and...
nemorphism. The late diagenetic stages caused dolomitization, stylolization and karstification.

The inferred diagenetic sequence of the Mfamosing Limestone is as shown in fig.3 while the observed diagenetic events and interpreted diagenetic environments are shown in fig.4. Petrographic studies reveal imprints of vadose, meteoric, phreatic and submarine diagenesis. Generally, the limestone exhibits bulk diagenetic characteristics independent of limestone microfacies type.

<table>
<thead>
<tr>
<th>Diagenetic Events</th>
<th>Vadose</th>
<th>Meteoric Phreatic Zone</th>
<th>Deep Meteoric Phreatic Zone</th>
<th>Mixed Fresh H₂O Marine Phreatic Zone</th>
<th>Marine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micritization</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isopachous cementation</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Initial Cementation</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cementation by equant calcite</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neomorphism</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Syntaxial rim</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dolomitization</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stylolization</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dissolution</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 3: Diagenetic events and interpreted diagenetic environments

Micritization (Bathurst, 1966) represents the earliest indication of diagenesis in this limestone unit (Plates 1 and 2). It occurs as a result of boring by endolithic algae and fungi, causing widespread and wholesale destruction of all types of grains, skeletal fragments, oolites and pelloids. The processes of micritization are known to occur in shallow stagnant marine phreatic zone especially at the sediment/water interface (Kobluk and Risk, 1977).

Isopachous cementation represents the earliest diagenetic event in the Mfamosing Limestone. It varies from very thin rim (Plate 3) to bladed morphology (Plate 4). This constitutes the first generation of cement which is followed by equant, interlocking mosaic calcite cement (Plate 4) which coarsens towards the center. The first generation of cement suggests deposition in a submarine diagenetic environment. Records similar to the second generation of cement observed in this limestone are abundant in geologic history (Bathurst, 1971; Jacka and Brand, 1971). It represents early cementation in a freshwater phreatic diagenetic environment (Loucks, 1977). Reprecipitation of preferentially dissolve allochemical particles represent the third generation of cement.

Syntaxial rims (overgrowth) which are in optical continuity with echinoid fragments envelopes pre-existing grains forming fabric and occludes porosity. Longman (1980) has indicated that syntaxial outgrowths forms more rapidly in a freshwater phreatic diagenetic environment.

Dolomitization which represents one of the late diagenetic events of the Mfamosing Limestone was observed as subhedral to rhombohedral crystals (Plate

Fig. 4. Tentative diagenetic model for the Mfamosing Limestone

1. Photomicrograph of the intra-bioclastic grainstone test, echinoid fragment, coralline algae with admixture of coated grains and pelloids. Note the micritic rims of most of the allochems due to a algal boring. Sample from quarry face, calcemco Quarry face, type section, Mfamosing Limestone (PPL - x40).
Two phases of compaction in the Mfamosing Limestone were inferred from petrographic studies. These are the physical and chemical compaction. Physical composition involves breaking of grains and compaction of allochems while the chemical compaction is evident both as pressure solution at grain contact and multiple microstylolite-horstail.

Stylolites are a common feature in the limestone under study especially in the southern part of the area under investigation (Mfamosing, Etankpini and Agbun). They are products of post-consolidation intrastral solution (Petijohn, 1975). In the Mfamosing Limestone, stylolites occur both within the limestone units and along lithologic (Microfacies) boundaries. Their surfaces are stained with seams of

4. Photomicrograph of the oolitic-pelloidial packstone microfacies showing oolite with dissolved nucleus. Note the bladed isopachous rim cement followed
Sample taken from the quarry face, type section, Mfamosing Limestone (PPL – x40).

5) in both the cement and allochems, indicating a post cementation process. Ions for dolomitization may have been derived from water expelled from the overlying Ekenkpon Shales. The transition of this carbonate body through mixed meteoric-marine phreatic diagenetic environments may be a contributory factors (Bodiozamani, 1973). Similar case studies have been reported in the Pleistocene Hopegate and Folmtho Formations in Jamaica (Land, 1973a, b). Also, magnesium released by high-magnesium skeletal grains such as Coralline algae during diagenesis could serve as a magnesium ion source for dolomitization.

5. Photomicrograph of the Mfamosing Limestone showing subhedral to euhedral dolomite crystals growing in a micritic matrix. Sample was taken from a outcrop, Odukpami area, SE Nigeria (PPL – x40).
neomorphic calcite. The neomorphic spars abut and transect both the allochems and the matrix (Plate 6). In some cases, it obliterates most of the internal structures of skeletal grains leaving behind dusty, micritic relics from which their original geometry can be inferred.

Diagenesis, depositional environment and fabric are the determinants of the types and distribution of porosity in the Mfamosing Limestone. The basic porosity types encountered are: moldic - Plate 7 (omoidic and crittemoildic), vuggy, channel, fracture and compound. Moldic porosity is fabric-selective whereas the rest are not. The porosity types in this calcareous unit are exclusively secondary. Primary porosity having been occluded by incipient cementation and compaction. The burial history of the Mfamosing unit appears to have followed a definite pathway of porosity development during subaerial exposure in the vadose diagenetic environment and destruction in the phreatic diagenetic environment.

DISCUSSION:

Mineralogical analysis of the Mfamosing limestone reveals high amount of calcium carbonate. This is responsible for such diagenetic processes as dissolution, leaching, cementation, neomorphism, stylolitization, porosity occlusion and rejuvenation.

The burial history of the Mfamosing Limestone tends to have followed a definite pathway as evidenced by the products of burial diagenesis. A tentative diagenetic model of the Mfamosing Limestone is shown in Figure 4.

Initial deposition of this limestone during early diagenesis began in the submarine diagenetic environment as evident in incipient cementation producing isopachous rims. Langman (1980) and Macintyre (1977) have shown that isopachous rim cementation is diagnostic of a submarine diagenetic environment.

Diagenetic imprints of intense leaching, dissolution, formation of molds and vugs suggest subaerial emplacement of this carbonate body in a vadose diagenetic environment. These have been attributed to the action of undersaturated percolating freshwater in the vadose diagenetic environment which is slightly acidic and hence take into solution material of calcium carbonate composition (Friedman, 1965).

The transition of this carbonate body from the submarine to the vadose diagenetic environment through the phreatic and mixed diagenetic environment is very significant. It marked the phase of porosity occlusion and intense neomorphism. The phreatic diagenetic environment is generally saturated with calcium carbonate and this enhances intense neomorphism and precipitation (Friedman, 1964).

The final emplacement of the limestone unit in
a vadose diagenetic environment marked a phase of porosity development and karstification. The rejuvenated porosity is entirely secondary and basically telogenetic (Choquette and Pray, 1970) since the pore spaces were developed postdepositionally during which the long buried limestone unit was subjected to subaerial and subsaerueous erosion. The dominantly ferroan calcite identified by staining of this limestone gives credence to this.

SUMMARY AND CONCLUSION

Deduction from X-ray diffractograms show that the Mfamosing limestone is mineralogically stabilized. Calcite is the major mineral constituent with varying amounts of quartz and feldspar. Diagenetic studies indicate overprinting of diagenetic events and environments. Diagenetic events in the Mfamosing limestone is evident as isopachous rim cementation, neomorphism, chemical and physical compaction, dissolution-reprecipitation, stylolitization, dolomitization,porosity occlusion and development. Diagenetic imprints show that this limestone unit evolved through a submarine, phreatic and vadose diagenetic environments. Basic porosity types encountered are moldic, vuggy, channel, and compound types. These are basically secondary in origin. Porosity development is basically telogenetic i.e the pore spaces are developed during the postdepositional time interval in which the long burial limestone is influenced significantly by processes associated with subaerial and subsaerueous erosion.

ACKNOWLEDGEMENTS

The authors acknowledges the short term fellowship given to the second author by German Academic Exchange Service (DAAD) at the University of Tuebingen, Germany. The authors are grateful to Prof. S. W. Petters, Dept. of Geology, University of Calabar, Calabar for supervising this project.

REFERENCES

Loucks, R. G; 1977. Porosity development and distribution in shoal-water carbonate complex-subsurface Pear Salt Formation (Lower Cretaceous), South Texas, in cretaceous carbonate of Texas and Mexico, application of subsurface exploration; Texas Univ. Bur. Econ. Geology Rept. Inv; p. 97-126.

