GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 11, NO. 4, SEPTEMBER 2005: 561 - 545
COPYRIGHT(C) BACHUOQ SCIENCE CO. LTD. PRINTED (N NIGERIA. 1SSN 1118- 6579 561

OBJECT-RELATIONAL DATABASE DESIGN-EXPLOITING OBJECT
ORIENTATION AT THE DATABASE LEVEL

BARILEE B. BARIDAM and 0. OWOLABI

(Received 17 March, 2004; Revision accepted 8 September, 2004)

ABSTRACT

This paper applies the object-relational database paradig in the design of a Health Management Information Syste;m. The class
design, mapping of object classes to relational tables, the representation of inheritance hierarchies, and the appropriate database

schema are all examined.

KEYWORDS: object relational, database schema, OID, instance variables, health system.

INTRODUCTION

T ¢ object paradigm is based on building application out of
objects that have both data and behaviour. Relational
paradigm is based on storing data on tables. The integration of
database capabilities with object programming language
copabilities: results in an Object-Oriented Database
Menagement System (OODBMS). An OODBMS makes
database objects appear as programming language objects in
one or more existing programming languages. The OODBMS
extends the language with transparently persistent data,
cancuirency control, data recovery, associative queries, and
other datebase capabilities (ODBMS, 2003).

Orject-relational databases augment the concept of relations
with object orientation. It is thus a ready way of migrating a
relation database into an object-oriented database. There are
many advantages to including the definition of operations with
the definition of data. First, the defined operations apply
ubiquitously and are not dependent on the particular database
application running at the moment. Second, the data types can
be extended to support complex data such as multi-media and
imaging by definiing new object classes that have operations to
s\ oport the new kinds of information (DACS, 1997).

Other strengths of sbject-oriented modelling are well known
(Wirfs-Biocks, et. al. 1990). For example, inheritance allows
solutions to complex problems to be developed incrementally
by defining new objects in terms of previously defined objects.
Polymorphism and dynamic binding allow the definition of
operations for one object and then to share the specification of
the operations with other objects. These objects can further
extend these operations to provide behaviours that are unique
to them. Dynamic binding determines, " at runtime, which of
these operations is actually executed, depending on the class
of the object requested to perform the operetion.
Polymorphism and dynhamic binding are powerful object-
oriented features thal ailow the compaosition of objects to
provide solutions without having to write code that is specific to
each object. All of these capabilities come together
synergistically to provide significant productivity advantages to.
database application developers.

A significant difference between object-oriented databases and
i¢.tional databases is thal object-oriented databases
represent relationships explicitly, supporting both navigational
and associative access to information. As the complexity of
interrelationships between information within the database
increases, the greater the advantages of representing
relationships explicitly. Another bepefit of using explicit

relationships is the improvement in data access performance
over relational value-based relationships.

A unique characteristic of objects is that they have an identity
that is independent of the state of the object. For example, if
one has a car object and we remodel the car and change its
appearance — the engine, the transmission, the tires so tihat it
looks entirely different, it would still be recognised as the same
object we had-originally. Within an object-oriented database,
one can always ask the question, is this the same object | had
previously, assuming one remembers the object's identity.
Object-identity allows objects.to be related as well as shared
within a distributed computing network. ’

All of these advantages point to the application of object-
o1.2nted databases to information management problems that
are characterised by the need to manage: a large number of
different data types, a large number of relationships between
objects, and objects with complex behaviours.

All of these objects are seen in the information system
infrastructure of the National Health Insurance Scheme (NHIS)

as an integral part of the hospital management system. Beside
healthcare, other application areas where this kind of
complexity exists includes engineering, manufacturing,
simulations, office automation and large information systems.

In this paper we apply the concepts of object-oriented and
object-relational databases in designing a web-based
administrative application tailored specifically for the
registration process of the National Health Insurance Scheme.
The goal is to identify the object classes that are required for
the proper implementation of this system, and to map these
classes to relational database tables. This system, when
implemented, will make it possible for health care providers
nationwide to register on-ine with the NHIS Abuja
Headquarters office. Detailed operational information and
financial transactions are also to be allowed a two-way flow
between the NHIS office and the providers. This will ensure
the effective coordination of the scheme. Comparisons are
also made between the relational and object-relational
database designs, and object-oriented analysis and design for
the system is also outlined.

Under the Formal Sector Social Health [nsurance Programme,
the National Health Insurance Scheme registers eligible
employers, who are allowed to choose any Health
Maintenance Organisation (HMO) from an NHiS approved fist.
These HMO's must in tumn have been registered with the
NHIS. Employees and their dependents are then registered
with the Scheme and issued identity cards, after which they

BARILEE B. BARIDAM, Dept. of Mathematics/Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.
Q. OWOLABI, Department of Mathematics/Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.

BARILEE B. BARIDAR) and 0. OWOLABI

Provider
{abstract}

insiMame
address
phoneNumber
mDirectorMame
licenceNo
numberOMBeds

clinictlours

attachee

I
“Primary
Govi_ _Infstitution Fee_For
Institution e Lo _Service -
providerClass spuctalty certRegNumber
ownership practice Type

Fig. 1. A Unified Modeling Language (UML) ciass diagram of the Provider class hierarchy.

| Relational Model ~Object Model
Relation @ Similar ~—-—{ Class
Tuple d—t—— Similar -——| Object Instance
Column e Similar e pl Attribute
Stored Procedures <--——— Diffcrent - Methods

Figure 2: A Diagrammatic Comparison of object and refational terminology.

arve required to register with an NHIS-approved Primary Health
Care Provider of their choice, who they will consult for all their
healthcare needs.

IDENTIFYING OBJECT CLASSES

The NHIS was set up to manage the provision of health
facilities nationwide under an insurance scherme system. The
health service providers could be classified into: government
institutions, primary institutions and fee-for-service providers.
These can thus be considered as subclasses of a Provider
class. The UML. class diagram of the class hierarchy is shown
in Figure 1.

Another possible class that could be created for this project is
the HMO class. A class definition lists all the parameters that
are needed to define an object of that particular class. The
parameters chosen are based on the need and objective of the
work (Horton, 2002).

MAPPING OBJECTS TO RELATIONAL DATABASES

For relational databases to have the behaviour of object-
oriented Databases there must exist a technique to bind or

map these objects to the relational databases. Figure 2 shows
the correspondences between the relational and the object
model,

Objects are assigned identifiers for easy identification. OIDs
are used to uniquely identify objects in a database. The
assigning of OlDs is internal. In relational terrminology a unique
identifier is called a key, whereas in object terminclogy it is
called an QID, although perhaps persistent object identifier
would be the better term (Ambiler, 2000). Every object in the
system is automatically given an identifier that is unique and
immutable during the object’s life. One object can contain an
OID that logically references, or paints to, another object.
These references prove valuable when associating objects
with real-world entities, like in the information system under
consideration. They also form the basis of features such as bi-
directional relationships, versioning,- composite objects, and
distribution. In most QDBMSs, the OIDs become physical (the
logical identifier is converted to pointers to specific memory
addresses) once the data is loaded into memory (cached) for
use by the object-oriented application. This conversion of
references to memory pointers, sometimes called pointer
swizzling, allows access to cached objects at native memory

S

OBJECT-RELATIONAL DATABASE DESIGN-EXPLOITING OBJECT ORIENTATION AT THE DATABASE LEVEL 563

Object Factory olb
Persistent Objeet nextHigh creates |, high R
Abstract » » low
oid uses | nextlLow i o)t
0. 1 asColumns
newOID
. fetchHighValue

| Provider

Figure 3: A Class diagram showing a possible way to implement an OID

Provider

QI

InstNae
address
phoneNumber
mbircctorName
ficenseNo
numberQfBeds
clinicHours providerClass
owncrship
specialty
certRegNumber
practiceType

objectType

Figure 4: Strategy 1 - One Table Per Hierarchy

Fee_KFor_Service
Q1D

InstName
address
phoneNumber
mbircctorName
ficenseNo
numberOQf3eds
clinicllours
certRegNumber
practicetype

Govt_lnstitution
Olb

[nstName
address
phoneNumber
mbDirectorName
licenseNo
numberQfBeds
clinictlours
providerClass
ownership

Primary Institution

QID

InstName
address
phoneNumber
mbirectorName
licenseNo
nemberOfBeds
chinictlours
specialty

Figure 5: Strategy 2 - One Table Per Concrete Class

speeds (hundredths of microseconds) instead of the traditional
approach of messages to the server, which takes milliseconds
(M..-Clure, 1997).

Object-identifiers are typically implemented as full-fledged
objects in. object-oriented applications and as large integers, or
several large integers for larger applications in relational
schema. The basic idea is that when a persistent object is
created it is assigned an OID which is created by the single
instance of ObjectFactory. This is shown in Figure 3. The sole
responsibility of ObjectFactory is to create new OID objects. It
does this by keeping track of the next HIGH and LOW values,
having to fetch a HIGH value from the persistent mechanism
(database) occasionally to do so. It creates an instance of OID
based on the next values and returns it to be used as the
unique OID for the new persistent object. The asColumns
method returns a collection of data items that can be saved to
a relational database to reprsent the instance of OID.

By using OIDs to uniquely identify objects in the database we
greatly simplify our strategy for database keys - table columns
that uniquely identify records — making it easier to implement
inheritance, aggregation, and instance relationships.

MAPPING ATTRIBUTES TO COLUMNS

The attributes of a class will map to zero or more columns in a
relational database (Ambier, 1998). Not all attributes are
persistent. In this design, some classes have atiributes that
are used by instances for specific processes but are not saved
to the database. Such attributes are regarded as non-
persistent. It is worth noting that some attributes of an object
are objects in their own right. Sometimes a single object
attribute will map to several columns in the database (actually
chances are that such a class wili map to one or more tables in
its own right). The important thing to note is that this is a
recursive definition, since at some point the attribute will be
mapped to zero or more columns (Ambler, 2000).

MAPPING CLASSES TO TABLES

Classes map -to tables, although often not directly. This
mapping has to take care of the inheritance hierarchy of the
obiects. The problem -basically boils down to “How do you
organize the inherited attributes within the database?” The way
in which this question is answered can have a major impact on
the system design. There are basically three solutions, shown
in Figures 4 to 6, for mapping inheritance intc a relational
database:
Using one table for an entire class hierarchy,
which involves mapping an entire class hierarchy
into one table, with all the attributes of all the
classes in the hierarchy stored in the table
(Figure 4). The main advantage of this approach
is its simplicity.

Using one table per concrete class, in which
case each table includes both the attributes and
the inherited attributes of the class that it

564 ‘ BARILEE B. BARIDAM and 0. OWOLABI

Provider
[0]1)]
InstName
address
phoneNumber
mDirectorName
licenscNo
numberOfBeds
clinictlours

Govt_Institution Primary_Institution

Fee_For_Secrvice

OID (FK) QID (FK) OID (FK)
providerClass specialty ! certRegNumber
ownership ‘ practiceType:

Figure 6: Strategy 3 - One Table Per Class

represents (Figure 5). The main advantage of
this approach is that it is stili fairly easy to do ad
hoc reporting as all the data needed about a
single class is stored in only one table.

Using one table per class. This involves creating
one table per class, the attributes of which are
the OIDs and the attributes that are specific to
that class (Figure 6). That main advantage of this

approach is that it conforms to object-oiiented
concepts the best.

Concerning the design trade offs between the three strategies,
if another class is added which inherits from, say
Govt_Institution, very little effort will be needed to update the
one table per hierarchy strategy, although the obvious problem
of space wastage in the database will increase. With the one
table per concrete class strategy we only need to add one
table, although the issue of how to handle objects that change
their relationships now become more complex. With the third
mapping strategy, mapping a single class to a single table, we
need to add a new table, one that includes only the new
attributes of the added class. The disadvantage of this
approach is that it requires several database accesses to work
with instances "of the new class inheriting from
Govt_Institution.

The first strategy was chosen in the design of the database.
The reason is that it presents a better approach in comparison
to the other two as it cuts down on the cost of creating tables.
We consequently arrive at the following relational structure for
storing persistent objects in the system.

RELATIONAL SCHEMA

Constructing a -schema for the database NhisDbs we shall
look at two tables, namely Hmo and Provider. The structure of
the schema is simply. a series of domain entries otherwise
referred. to as attributes as it applies to each table in the
database,

Hmo(HmelD,
Branches,

Address,
CashRatio,

AnnualTurnover, AsseiRatio,
CertNumber, Computerisation,

Coverage, DateSent, Deposit, Email, Fax, InstName, Insurers,

MedName, Objective, PdShareCapital, PhoneNumber,
PostalAddress, PrincipalOfficers, RegDate, RegOffice,
ShareCapital, ZonalOffice)

Providers(ProviderlD, Address, Beds, ClinicHours,

Currentlicence, DateSent, Email, Emergency, Employee,

ExpiryDate, Facilities, Fax, InstName, IssueDate, Lga,
MedicalDirector, MedName, Name, Ownership,
PhoneNumber, PostalAddress, PracticeType,
ProfQualification, ProfRegNumber, ProfRegYear,

ProviderClass, RegAddress, RegNumber, Services, Speciality,
State, Statelicence, TradeName)

CONCLUSION

We have been able to explore the potential benefits of the
object-relational database model and apply its methods in the
design of a relational database schema for a health-sector
information system. With the approach of mapping objects to a
relational database it becomes easier to develop object
applications using a relational database. Programmers can
thus enjoy the features, offered by object-oriented database
design.

REFERENCES

Ambler, S. W., 1998. Building Object application That Work
SIGS Books/Cambridge University Press.

Ambler, S. W, 2000. Mapping Objexts to Relational
Databases October 21, 2000.
http://www.AmbySoft.com/mappingQObjects. pdf

DACS, 1997. Object-Oriented Database Management

Systems Revisited. An Updated DoD Data & Analysis
Centre for Software state-of-the-Art Report,
December 18, 1997. hitp:/iwww.dacs . dtic.mil

OBJECT-RELATIONAL DATABASE DESIGN-EXPLOITING OBJECT ORIENTATION AT THE DATABASE LEVEL 565

Horton, 1., 2002. Ivor Horton's Beginning. Java 2 SDK 1.4

ODBMS, 2003. Object Database Management System
Edition, Wrox Press Ltd. (ODBMS) definition http:/iwww.odbmfacts.com (June,
' 2003).
McClure, S., -1997. Object database vs. Object-Relational _ ' . .
Databases. IDC Bulletin #14821E August 1897. Wirfs-Brock, Wilkerson, R, B. and Weiner, L., 1990. Designing
: object-oriented software. Prentice-Hall , Englewood
Cliffs, NJ

