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ABSTRACT

“The goal of texture feature extraction is to obtain a set of texture measures, which can be used to discriminate among
different textural pattern classes. In this paper, a new approach to the characterisation of texture properties from
standard pyramidal wavelet decomposition is described. Because of the multiresolution data representation of the
outputs of wavelet filter bank, we propose to estimate texture features over a pyramidal structure which.is composed
of the whole levels of the wavelet decomposition. This multiresolution approach of texture feature extraction provides
effective texture features for texture classification and is computationally attractive in a progressive segmentatior

process. Numerical experiments are given to demonstrate the reliability of our new method.
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INTRODUCTION

.Waveiet transform has r_eceived significant atténtion recently
due to its suitability-for a number important signal and image

- pracessing tasks. Mallat (MALLAT, 1989) first suggested the

use of wavelet transform for texture analysis because its
discrete version provides a good multiresolution representation
of the signal and gives orientation sensitive information for
texture characterisation.

During the past decades, many researchers have reported the
success of applying discrete wavelet to texture analysis
(ZHANG and TAN, -2002). Their common approach is
equivalent to local linear transform method (LAWS, 1980 and
UNSER, 1986). Texture image is fi ltered with a bank of
wavelét filters and loca! texture properties - are then
characterised by a set of energy measures computed at the
output of each filter bank (CHANG, 1993, SALARI, 1995;
. UNSER, 1995 and.-BASHAR, 2003). Generally these energy
values are eshmated over a rectangular moving ‘window
centered at a given pixel. The size LxL of this window can be
i (CHANG 1993) or variable according to the level of
resolii'on (SALARI, 1995). This approach to texiure feature
- extraction can be viewed as an extension of single resolution
technique to muitiresolution analysis.

In this article, we propose to compute texture energy values
* over a pyramidal structure, which is composed of the whole J-

levéls of wavelet decomposition. This multiresolution approach
- to texture characterisation seems to be well adapted to the
- intrinsic multiresolution data representation of the traditional
_pyramid-type wavelet transform.

This article is organised as follows: In section || we exnose

briefly the standard pyramid-structured wavelet transform and

we define in section lil the new structure on which texture
feature are extracted. Section IV presents an application of our
approach to texture classification and : compares its
performance with that of local linear transform using Discrete
Cosinus Transform (DCT). Finally a progressive texture
segmentation algorithm and illustrative examples are proposed
in Section V.

7

STANDARD WAVELET TRANSFORM

Wavelet transform provides a precise and unified framework
for multiresolution analysis. The traditional pyramid-type
wavelet transform decomposes a signal with a family of
orthonormal bases .obtained through translation (variable n)
and dilatation (variable m) of a kernel function y(x) known as’
the mother wavelet:

W ()= 2729w My _p)

To construct wavelet y, we first' determine a scaling

function ¢(x), which satisfies:

D(x) = V2 Iy d(2x - k)
k

Then, function y(x) is determined 3s:

W(x) = V2 ) g ®(2x - k)
k

The coefficients h(k) and g(k) must satisfy the followmg
relation (DAUBECHIES, 1988):. :

3
%
h)

g(k) = (=) h(1 - k)

It is convenient to view coefficients h(k) and g(k) as
impulse responses of a pair of fiters H and- G
corresponding to a lowpass and highpass filters. H and
G are called quadrature mirror in the signal processmg
literature.

In conventional wavelet decomposition, the patr C: fllters
H and G is applied in both the horizontal and vertical
directions, followed by a subsampling by two of each

~ output image. This process provides at the first level of

resolution four subimages of the original image lq(figure
1). I is acoarse or approximate -image of l, and D“1.
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Fjgure 1.

DY), D° are the orientation selective detail images
respectively . in  horizontai, vertical
directions (MALLAT, 1989). Due to the subsampling by
two at each stage, the spatial resolution of the four
subimages decreases accordingly. Decomposition can
be iterated from the approximate subimage |;. to
generate the next level of resolution (figure 1). At the
end of the process, the stack of subimages of the same
‘type forms a pyramid.

9

and diagonal

Our goal is to use Wavelet filter bank to match the local-

texture structures in order to give best discrimination
among textured regions with accurate spatial
localisation. The success of this approach obviously
depends on the judicious choice of the filter bank.
Constraints on filter design include perfect
' reconstruction,  finite-length, and the regularity
. requirement that the iteratec lowpass filters involved
converge to continuous function. In a previous work,
Unser (1995) has pointed out that increasing ‘the
regularity of filter bank does not seem to have any real
advantage for texture analysis and discrimination. On
the other hand, the localisation properties of the analysxs
filter bank seem to be more important.

In our application, we chose to use the filter bank (H =
{1/2; 1/2} and G = {1/2;, -1/2}) associated to Haar's
wavelet. This choice was made for the following
reasons. First, the filters are symmetrical. That means

trat there is no phase distortion and that the spatial

localisation of the wavelet coefficient is well preserved.
‘Second; the use of shorter filters ‘provides .faster
-computation and a good space localisation of the
analysis filter bark. Its implementation is equivalent to
the local linear transform method using the 2x2

Wavelet decomposition process

Hadamard transform. Finally in the next section, we will
see that Haar's wavelet is very consistent with our
approach+o texture characterisation.

TEXTURE FEATURE EXTRACTION

- The classical wavelet-based feature extraction is related

to local linear transform method. In this approach, the
local texture properties are characterised by statistics
associated with the outputs of wavelet filter bank. For
each subimage texture features are estimated over a
moving rectangular window with fix or variable size
according to the considered level of resolution. This

~ approach is more an extension of single resolution

techniqgue to multiresolution analysis than a proper
multiresolution technique for texture feature extraction.

in this paper, we propose a new method of texture
feature extraction, which takes into account the
multiresolution data structure of wavelet decomposition
by associating together the different levels of resolution.
In that way, texture features will be computed over a
pyramidal structure instead of a rectangular window. We
think that due to the intrinsic pyramid-type data
representaticn . of wavelet transform, this structure is
more appropriate for5 texture feature extraction.

Let us consider the J-level conventignal wavelet
decomposition of a 2'x2’ pixels of an original image.
The top level J of the decomposmon has ‘a single pixel k.
We define the pyramidal structure P J(k) associated to
the pixel k, as the set of subimages s (1<j<J) of a given
type X of subimage. Pyramidal structure P%,(k) can also
be viewed as a collection of rectangular windows S of
sizes 2"x2" (1<j<)) varying with the considered Ievel of
resolution j. Figure 2 gives an example of a pyramidal

i=3

Figure 2: Pyramidal structure of a 3-level wavelet decomposition
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_structure  P*j(k) obtained from a 3-level wavelet

decomposition of an original image of size 252°

The size of the pyramidal structure PXJ(k) increases with
the top level J. In total, a J-level pyramidal structure has

Ny = %(H —l)pixéls.‘ When J varies, the analysis of

- spatial interactions. on the origihal image is carried out

either over small or large neighbourhoods of 2'x2’

pixels. Thus it appears that for any level J, pyramidal
structure and Haar's bank filter have exactly the same’

support of size 2'x2’ on the original image. This property -

makes Haar's wavelet suitable for our texture feature
extraction approach. Indeed, each block of 2°x2’ pixels
can be characterised . without any overlapping with
another block. This is particularly useful in texture
segmentation context where the recovery of different
blocks increases classification errors -of texture region
borders.

N

- Four different pyramidal structures can be obtained from
- . wavelet decomposition.. But in our applicaton we use .
. only the three pyramidal structures, -which contain

orje'ntation sensitive information because it is well known
that information about texture pattern orientation is
essential to characterise textures.

Many texture features as local texture energy can be
computed over the pyramidal structure P Fora given
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orientation X and for a pixel k at the level J, local texture
energy is defined as:

35 e

4= beSX (k)

EX (k) =

where | is the current level, S is the window
corresponding to the jth level of the pyramidal structure,
d(b) is the vaiue of the pixel b, and N, denotes the total
number of pixels in the pyramidal structure.

At any' level J, three. local texture energies
corresponding to the three orientations (H, V, D) can be .

‘computed_to form texture feature vector. Note aiso that

local texture energy can be recursively calculated from a
level to the next superior.

TEXTURE CLASSIFICATION

- Classification .is a process where given a textured

image, it is assigned to one of a finite number of classes
to which the sample belongs. We -performed
classification experiments using 10 textures displayed in
figure 3. The size of the images is 256x256 with 256
levels of grey. We constructed the four-level wavelet

- decomposition using Haar's filter bank.:For each pixel k
at level 4, we computed over a 4-level pyramldal

structure of N4=85 pixels, 3 local texiure energies (E 4
E", and E°4) as components of texture feature vector.

T4

Figure 3: Textures of our experiment

For: each'texture a total of 256 independent feature
vectors was evaluated. The discrimination function used
is Euclidean distance. We choose to compare the

performance of our method (M1) and those of local -

linear transform using Discrete Cosinus Transiorm
(DCT). To make feature set comparable, we implement

the DCT using its vertical (V), horizontal (H) and
diagonal (D) edge detectors, which have the same
orientations than those of wavelet transform. Local
texture  energy is then computed at each filter output
over a 15x15 moving rectangular window (method M2).
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The classification results for the two methods are given
in Table 1. We can note that our method is particularly
sensitive to structural - textures, which have high
concentration of localised spatial frequencies. In
contrast, DCT features computed over a rectangular
window yield better performance principally for the class
of so-called micro-textures (T1-T3). Globally, our texture

feature extraction scheme outperforms the DCT one.

This result confirms that multiresolution method is more

efficient than a single-level analysis, which focus on
relatively small neighbourhoods. In the following section
we discussed the use of the pyramidal structure in a
progressive texture segmentation'process.

Table 1: Percent of correct classification of ten textures

T10

Textures T1 T2 T3 T4 T5 T6 T7 T8 T9 Totai Score (%)
M1 (%) 921 |187.1(875(922 (984 |938[918|906 (914|984 92.33
M2 (%) | 945|909 | 91.0 | 91.0 | 86.7 | 94.1 | 844 825.6 938 | 923 90.23
TEXTURE SEGMENTATION size 2°nx2°n on the original image. Such block becomes

Tixture segmentation consists in partitioning a given
image into connected regions of homogenous texture. .
The most difficult problem is to correctly determine the
boundaries between textures beeause generally,
features extracted in the boundary regions are
representative of two or several textures.

In a multiresolution context, the definition of an nxn
rectangular window at level J, corresponds to a block of

very large when J and n increase (figure 4.a) and

therefore can not help to accurately describe boundaries
between texture. To reduce segmentation errors, we
propose to estimate texture features over a pyﬁémsda!
structure, which corresponds to a less small block of
size 2 ><2J on the onglnal image (ﬂgure 4.b). Moreover

" the size of the pyramidal structure varies automatically

with the level of resolution (figure 5). This adaptable size
is very useful for a progressive segmentation process
which moves according to ‘coarse to fine” resolution

. strategy.

@

®

'Figure 4: Comparison of the supports of a rectangular window (a) and pyramidal structure (b)

The segmentation process begins by the construction of
a J-level Haar's wavelet decomposition of the original
image of size 2"x2". Then for each pixe! k at the top-
level j=J, the 3 local texture energies are evaluated over

a pyramidal structure to form texture feature vector.

associated to the pixel k. We assume that the number of
cluster ¢ is known. At level j=J, texture feature .vectors
are used in a fuzzy C-means clustering algorithm to
segment the textured image into ¢ labelled regions. We
obtain a coarse segmentation of the original image.
Then a relaxation process is conducted on the
segmented image in order to integrate a kind of spatial
refationship, which ‘is not taken into account in the

Figure 5: Variable size of the pyramidal structure

/



J= J=3 J=2

final result (=0} - original‘lmag '

Figure 6: Progressive texture segmentation results with 2 textures of sand

£ £

Figure 7: Texture §Mentation result with 2 textures and 4 textures -

Table 2: Comparison of segmenfation process using “pyramidal” and 3x3 “rectangular” windows

Pyramidal structure

3x3 rectangular window

Correct classification rate (%)

(fine sand) 97.3
(coarse sand) 97.8

(fine sand) 93.5
(coarse sand) 94.8

Computation time (s)

33.5 . 47

‘clustering phase. Thus a vote is held among the eight
~connected neighbours to detect the ambiguous pixels,
(e.q. pixels which are isolated or which belong to the
region borders). '

To improve the first result, the segmented image is
expanded from size 2Vx2¥ to size 2V
corresponding to the level j=j-1. Only the clustering of
‘the ambiguous pixels will be reported at this new current
level j. In this way, successive resuits of segmentation
~ are propagated from the top to the bottom of the wavelet

L
Original image (a)

decomposition structure. At the end of the process, &
3x3 median filter is used to smooth the final result.

Figure 6 illustrates the different phases of segmentation
process with an image composed of coarse and fine
sands. The segrentation process begins at level j=J=4
and is iterated until level j=1. We can see that the first
result (j=4) is gradually improved. Finally a 3x3 median
filter is applied to obtain the segmentation result of the
original image. Figure 7 gives also the results of the

segmentation of two different texture images.

(b)

Figure 8: Segmentation results with 3x3 rectangular window (a) and pyramidal structure (b)

We have compared our results to those of the classical
method using a moving 3x3 rectangular window at
different levels. Segmentation results are given in Table
2 and in Figure 8. Our method, which uses a pyramidal

structure, gives better clustering results as well as gocd
computation time. As we expect, we can note that when
rectangular window is used, classification errors are
principally located in the texture region borders.
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Table 3: Influence of the top Ievéi T

J=3 | J=4 | J=5

Textures
Correct classification rate(%) (fine sand) 926 | 973 | 932 %
(coarse sand) 938 | 978 | 95.2

Computation time (s)

37 335 35

J=3

J=4

J=5

Figure 9: Influence of the top level of wavelet decomposition

We have also studied the influence of the top level J on
the segmentation results (Table 3). We can note that
when J value is relatively small, the clustering gives not
satisfactory results (figure 8). It confirms that texture
features calculated over a window with small size are
not robust. In other hand, increase excessively J value
does not guaranty best performance. The choice of J=4
seems to be relevant in many applications as reported
by others studies (CHANG, 1993; SALARI, 1995).

CONCLUSION

In this -paper, a multiresolution wavelet-based feature
extractnon has been proposed. After wavelet
dedomposmon texture features was. computed over a
pyramidal structure. These multiresolution features are

relevant to discriminate between different textures.

Experimental results of a texture classification algorithm
~‘have been presented which demonstrate the
performance of the feature extracton method.
Segmentation experiments were also conducted using
the advantage of the pyramidal data representation As
the size of the support of the pyramid structure varies
according the resolution, a progressive texture
segmentation algorithm has been proposed. The
advantage of this process is to provide adequate
segmentation at much lower cost than -a single
resolution method. Note that the filter bank associated to
Haar's wavelet is very consistent with our approach
b cause it leads to a segmentation process without non-
overlapping regions.’
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