GROWTH PERFORMANCES OF PARACHANNA OBSCURUS (GUNTHER, 1861) FRY REARED IN EARTHEN PONDS UNDER MONO- AND POLYCULTURE SYSTEMS

P. J. UDO
(Received 9 August, 2005; Revision Accepted 2 November, 2005)

ABSTRACT

Fry of Parachanna obscurus measuring 60 mm (1.1 g, wet weight) were stocked in earthen ponds (36 m²) for study of growth in two culture systems of monoculture and polyculture for 180 days. The stocking density of species under the two systems were 7, 15, 25, 30 ind. m⁻². The monocultured individuals were fed with IOC farm feed 1 (31.66% protein); while the other relied on Oreochromis niloticus and other natural foods in the ponds for the same culture period. The polyculture ponds were adequately fertilized to take care of production of food for Oreochromis that were introduced earlier before Parachanna species were stocked. At the end of study, final total lengths averaged 106 mm in those fed IOC farm feed (monoculture) reaching a growth rate of 0.23 mm d⁻¹ and 210 mm for those that relied on live fish/natural food for survival (growth rate = 0.35 mm d⁻¹). Weights of harvested fish ranged between 45.1 g to 64.0 g while survival rates of 6.8% to 74% were recorded in both studies. The aquaculture implications of these are discussed.

KEYWORDS: Parachanna obscurus, Growth, Monoculture, Polyculture, Ponds

INTRODUCTION

Most commonly cultured catfishes in West Africa are the Clarids (Heterobranchius longifilis, H. bidorsalis and Clarias gariepinus). The biology and the cultural attributes of these species are adequately documented (Viveen et al. 1986, Aguiowo, 1991, Lagendre, 1992; Oladosu et al., 1993). Parachanna obscurus have received little attention compared to works published in other closely related species. However scanty information on its biology (Ng and Lim, 1996; Wee 1992, Webber and Riordan, 1976, Bard et al., 1976), ecology (Reed et al. 1969, Wee 1982, Ulelu, 1993) and some cultural attributes of some of its Asian congeners abound. Aquaculturists and researchers have continued with attempts on the rearing of the Parachanna obscurus (Timonl et al. 1987, Wee, 1992, Victor & Akocha 1991, and Qin and Fest, 1996) in West Africa.

In this report, the cultivability of Parachanna obscurus under two culture systems was investigated; specimens reared under monoculture and polyculture systems fed artificial and natural foods respectively. Feeding is an important aspect in animal husbandry that must be manipulated to achieve growth of cultured species. It is known that the determination of the food type of species is important in the choice of the species for culture (Miyajima, 1977; Bard et al. 1976), Jubb (1967), and Victor & Akocha (1991) reported on the feeding niches of Clarias gariepinus and P. obscurus. They asserted that the two species are cannibalistic as well as first class carnivores respectively (Wee, 1982). It is hoped that these results will open up avenues for more intensive study of the species to discover optimum culture techniques for its successful cultivation in West Africa.

MATERIALS AND METHODS

Specimens of P. obscurus measuring 60 mm (or 1.1 g, wet weight) were obtained from the wild and transported to the Institute of Oceanography, University of Calabar, Calabar, then farm for a 14-day quarantine and acclimatization. During this time and prior to commencement of study, specimens were fed ad-libium with chopped earthworms. On the 15th day, specimens were measured (total lengths and wet weights) and stocked following two plans of culture. In the monoculture plan, specimens were stocked at a rate of 7, 15, 25, and 30 ind. m⁻² in 4 earthen ponds each measuring 36m². In the next system, specimens were stocked at the same density as in the monoculture trial but were polycultured with sub-adults (60 – 80 mm, total length) of Oreochromis niloticus that were stocked 60 days, during which time they spawned (95 – 105 mm total length), before the stocking of the main culture species. The polyculture ponds were adequately fertilized ensuring primary production and generation of benthos for the food fish and P. obscurus respectively. The stocking rate of 20 ind. m⁻² of the O. niloticus was arbitrarily chosen for the four-poly culture tanks. These experiments were repeated for another 180 days in the same ponds after the end of the first 180 days of study.

Table 1: Proximate composition and energy content of the components of the IOC Farm Feed 1

<table>
<thead>
<tr>
<th>Food Type</th>
<th>Dry weight (%)</th>
<th>Energy content (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>31.66</td>
<td>946</td>
</tr>
<tr>
<td>Lipids</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>Crude fiber</td>
<td>9.60</td>
<td>475</td>
</tr>
<tr>
<td>Ash</td>
<td>32.15</td>
<td>-</td>
</tr>
<tr>
<td>Moisture</td>
<td>5.05</td>
<td>-</td>
</tr>
<tr>
<td>NFE</td>
<td>5.54</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1787</td>
</tr>
</tbody>
</table>

The specimens reared under monoculture were maintained with IOC farm feed 1. The proximate composition of the feed is given in Table 1. Feeding rates of 5% body weights per day was followed, shared equally into 3 rations for three feeding a day in the monoculture system. The foods were merely broadcast on the water surfaces during feeding. The monoculture ponds were not fertilized throughout the culture period to minimize interferences of foods from other sources in the ponds. In the polyculture trials, the medium was adequately fertilized with chicken manure to encourage the development and growth of natural food for O. niloticus and the benthos. Sampling of culture systems for growth was carried out bi-weekly. The new weights facilitated the adjustments of feeding rates for the polyculture species. At the end of each culture period of 180 days, the final weights and lengths of the specimens were measured and recorded. Water quality parameters such as dissolved oxygen; pH and T°C were monitored weekly during the period of study. The growth rates were compared using the single classification analysis of variance (ANOVA). Further test for variability was carried out to confirm the best strategy for rearing P. obscurus.

P. J. Udo, Department of Fisheries and Aquaculture, Institute of Oceanography, University of Calabar, Calabar – Nigeria.
RESULTS

The physico-chemical conditions of the pond for the 1 culture period were: temperature = 26.3°C, oxygen = 6.0 mg l⁻¹ and the pH of 7.0 (mean values).

Table 2 presents growth data of the specimens in the two systems of monoculture and polyculture. Survival rates were lower in monoculture than in the polyculture systems.

Table 2. Growth and survival of Parachanna obscura reared for 180 days in earthen ponds under monoculture and polyculture systems.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stocking density (ind m⁻²)</th>
<th>Total lengths (cm)</th>
<th>Total weight (g)</th>
<th>Growth rates mm d⁻¹ g⁻¹</th>
<th>Survival rates (%)</th>
<th>FCR</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>148</td>
<td>1.1</td>
<td>45.1</td>
<td>0.24</td>
<td>6.8</td>
<td>6.4</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>135</td>
<td>1.1</td>
<td>75.6</td>
<td>0.41</td>
<td>36.0</td>
<td>7.8</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>133</td>
<td>1.1</td>
<td>50.4</td>
<td>0.40</td>
<td>4.8</td>
<td>7.3</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>132</td>
<td>1.1</td>
<td>48.6</td>
<td>0.40</td>
<td>4.5</td>
<td>7.0</td>
</tr>
<tr>
<td>Polyculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>124</td>
<td>1.1</td>
<td>57.6</td>
<td>0.35</td>
<td>74</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>126</td>
<td>1.1</td>
<td>63.2</td>
<td>0.37</td>
<td>70</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>126</td>
<td>1.1</td>
<td>64.0</td>
<td>0.37</td>
<td>70</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>113</td>
<td>1.1</td>
<td>61.0</td>
<td>0.32</td>
<td>65</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- FCR = food conversion rate
- PE = Production efficiency

ANOVA F (2, 39) = 1.76 (p > 0.05) showed that the growth rates in the strategies were different. Further comparisons using test for variability indicated that the polyculture treatments were better than monoculture in terms of production efficiency and survival rates. However, the polyculture systems produced larger individuals at harvest than those from the monoculture ponds.

DISCUSSION

In general, high protein food encourages high growth rates in organisms (Wedemeyer and Malery, 1981; Wutz, 1992). In some aquatic organisms growth is depressed drastically with meals containing high protein levels e.g. Macrobrachium vollenhoveni that were starved and fed after a period of time showed poor growth with rich protein meals (Udo and Umoyo, 2001; Udo, 2004). In a related study, Malecha et al. (1981), and Stanley and Moore (1983) independently reported that Macrobrachium rosenbergii requires low protein and easily fragmented compounded feeds for optimal growth. In the study involving Heterobranchus bidorsalis and Claras gariepinus cross- breed larvae fed for 15 days with protein rich egg yolk, Arau and Akuwu (2004) stated that they responded negatively to feeding showing depressed growth. In this study, juveniles of P. obscura fed with food containing 31.86 % protein at low density did not respond adequately to the feed. It is possible that apart from poor food acceptability, and other known factors like space and competition as well as genetic factors, can contribute to the low growth in the species. It is well known that space, competition and gene types exert great influence on growth of species, even humans (Vines and Rees, 1972; Malecha, et al. 1984) In this study, the author is convinced that farming system have contributed to low growth and survival in the species studied. Growth rates were better in polyculture than in the monoculture systems. Statistics have shown that the rearing of P. obscura in polyculture with O.niloticus will lead to better production than when species are monocultured and fed artificially (Table 2).

The higher growth and survival rate of the polyculture milieu, most likely, was encouraged by the abundant natural food (originating from Tilapya fry’s and benthic production, as well as the rich primary production of phytoplankton and zooplankton) within the ponds (Table 2). On the other hand, the quality of artificial food given to the monoculture species alongside with the scarce natural food sources could have affected both the growth and survival rates of specimens. It could as well be argued that P. obscura preferred to cannibalize on themselves, and probably did not accept the artificial food, although of high quality. It was noticed that cannibalism led to development of out growers (jumpers) that might have out-competed the rest as a result of size differences in the monoculture ponds. Doyle and Talbot (1986) stated that allocation of space and food resources controls growth rates of species, the consequence of disproportionate share of food resources that placed the superior competitors (out-growers) ahead of others with a subsequent faster growth. Koebele (1980) had earlier asserted that where there is no disproportionate food acquisition there would be no size difference effects in species population. In other words, with the establishment of size differences in a population, smaller individuals are inhibited from satisfactory feeding due to the presence of larger ones. Therefore, it is assumed that the higher survival rates recorded in polyculture was encouraged by the abundance and availability of natural food in the system and non-competition for foods by species while the low rates of survival in monoculture was probably associated with predation and cannibalism.

The growth rates reported in this study for the two strategies are low (Table 2) compared to available records from similar species. A ranged of 0.34 g d⁻¹ to 0.66 g d⁻¹ is given for Ictalurus punctatus, Claras gariepinus and Cetosoma sp. (Elliot, 1975; Wedemeyer and Malery, 1981; Wutz, 1992; Reed et al., 1969). For example, the growth rates of 0.24 and 0.41 g d⁻¹ recorded in this study for species in monoculture ponds and 0.32 to 0.36 g d⁻¹ in polyculture are comparable with those given above. The minor differences can probably be accounted by two reasons; genetic factors, in which two different species can not grow equally (Vine and Rees, 1972); and that of environment of growth (Serar et al., 1982).
From the results of this study, better growth of P. obscurs is obtained from specimens reared under polyculture. If monoculture is the option, individuals should be stocked at uniform sizes and regularly inspected to ensure the extraction of out growers from the system. The administration of good and acceptable diets to fish should be ensured. The quality of food (in terms of protein content) administered to species was sufficient to produce good growth except feed was not accepted by fish. Guthere and Tarver (1981) asserted that unacceptable diets fed to cultured species also affects their growth rates.

ACKNOWLEDGEMENT

I acknowledge Mr. Cletus O. Wonah and Onete E. Okpo who carried out the preliminary study on the growth of the organisms in polyculture and monoculture systems in the Institute of Oceanography, University of Calabar, Fish Farm. The great assistance of the fish farm technicians during sampling is acknowledged.

REFERENCES


Jubb, R. A. 1967. Freshwater fishes of South Africa. A.A. Balkama, Cape Town (Amsterdam R S


Malecha, Spencer, Masuno, Scott and Onizuka, David, 1984 The feasibility of measuring the habitability of growth pattern variation in juvenile Freshwater Prawns, Macrobrachium rosenbergii(de Man) Prawn Aquaculture Research Programme, Department of Animal Sciences, University of Hawaii, Honolulu, Hawaii 96822, 13p


