EXTRACTION AND CHARACTERIZATION OF GELATIN FROM COW BONES: USING SUBTUTE DEMINERALIZING AGENT (H$_2$SO$_4$)

E. M. OKONKWO, C. S. EZEANYANASO, O. OFOEGBU, E. ALI AND N. T. IYAMU

(Received 29 May 2006; Revision Accepted 7 December 2006)

ABSTRACT

Gelatin has always been obtained from animal bones by demineralization with HCl followed by alkali treatments. In this work gelatin was obtained from bones by demineralization with H$_2$SO$_4$ and comparison with that obtained from HCl route was done. The products were characterized by determining the pH at 10% concentration, viscosity, colour, taste, solubility in solvents, particle size, smell, moisture (%) and ash (%). The results (pH = 6.7 moisture = 10.5 ± 1.5 and % Ash 1.6 ± 0.4) show that H$_2$SO$_4$ can be used in place of HCl in the production of gelatin from bones. This will reduce the overall production cost of manufacturing gelatin from bones considering the relative higher cost of HCl. The results of the viscosity, gel strength, pH, moisture content and antimicrobial tests: viscosity = 55, gel strength = 300g Bloom, pH = 6.7, % moisture content = 10.5 ± 1.5, when compared to standards, support the possible utilization of this grade of gelatin for industrial and pharmaceutical applications.

KEYWORDS: Cow bone, Defatting, Decalcification, Liming, Gelatin

INTRODUCTION

Gelatin a pure collagen protein from animal raw materials is obtained from animal hides and skin, tissue and bones (Boque 1922). Gelatin is an easily digested pure protein phosphate as an important byproduct (Ward A.C. 1958). About 65% of the worldwide produced gelatin comes from hide splits, connective tissues and the bones of cattle, though in Australia, South Africa and New Zealand sheep are also used (Korpf et al. 1972-1982). However, the quality of gelatin is partly determined by the source of supply, which in Europe traditionally is mainly from pigs (for food and medication). In Germany, only slaughter wastes from animals which are released for human consumption are used for the production of gelatin (for food and medication) (Patterson et al. 1962). The fear and uncertainty from many consumers of gelatin is as consequence of BSE (Bovine Serum) contamination crisis in gelatin containing products, because till date attack of BSE is only diagnosed at a very late stage (mostly at the completion of the full life cycle) and most infected animals are not identified before slaughter. In order to overcome this, gelatin without BSE-infectivity can only be produced from healthy animals. It is known that some of BSE-infected animal parts are far less infectious than others (Rinder 1995) and bone is one very advantaged part among others. The ability to detect BSE by any sensitive chemical/instrument test, in anatomical parts cannot be comfortably ascertainment, so the use of less susceptible parts in the production of gelatin is encouraged.

No pure bones (due to compositional make-up of bones), have been employed in gelatin production consequently the product has always been graded type B as a result of application area and product characteristics (Korpf et al. 1972-1982). However, type B gelatin is expected to be produced from this work and this type of gelatin has an exciting wide field of applications for quality enhancement of innumerable foodstuff and medicaments, serves as supplementary sources of protein carrier material, stabilizer and emulsifier. It is also used in flavour enhancement, as a clarifying agent in brewery industries to remove or eliminate turbidity and particle suspension in products such as beer, wine, fruit juices etc.

In pharmaceutical industries, gelatin is used in soft or hard capacities for binding tablets, capsule coats, sponges for treating wounds. They are component of vitamin formulations and cosmetics. They are also used in adhesive industry due to their gelling strength.

One of the two primary aims of this work is to possibly refine the production process for conversion of bones to gelatin in order to obtain a ‘Type A’ grade product. Presently, there is no known industry producing gelatin in Nigeria. Virtually all gelatin been used are imported (Taylor, et al. 1994) and the success of the project will optimize the economic value of discards of bones by increasing the number of products obtained from it.

EXPERIMENTAL

Materials

The bones were obtained from local abattoir in Zaria H$_2$SO$_4$, HCl, NaOH and n-hexane were obtained from BDH, Poole, UK. Ca(OH)$_2$ was obtained from the hydrated lime plant of the National Research Institute for Chemical Technology (NARICT) Zaria.

Equipment

Saxniet extractor, heating mantle, distillation unit, beakers, muslin cloth, bone crusher, Edwards high pressure vacuum pump, Solvent recovery unit and oven drier.

Method

(1) Defatting/Degreasing of Bones

50 g of bones were reduced to small sizes of 3 inches approximately and put into the soxhlet extractor with 250 mls of n-hexane added. Extraction was carried out for a minimum period of 6 hours. The degreased bones were dried in an oven at a temperature of about 70°C.

E. M. Okonkwo, National Research Institute for Chemical Technology, P. M. B. 1052, Zaria-Kaduna, Nigeria
C. S. Ezeanyanaso, National Research Institute for Chemical Technology, P. M. B. 1052, Zaria-Kaduna, Nigeria
O. Ofoegbu, National Research Institute for Chemical Technology, P. M. B. 1052, Zaria-Kaduna, Nigeria
E. Ali, National Research Institute for Chemical Technology, P. M. B. 1052, Zaria-Kaduna, Nigeria
N. T. Iyamu, National Research Institute for Chemical Technology, P. M. B. 1052, Zaria-Kaduna, Nigeria
Demineralization

25 g of defatted bones were soaked in a container containing dilute solution of H$_2$SO$_4$ at a concentration of about 0.15mol/dm3 for a period of 4 days with a daily periodic agitation of the content. Second set of the defatted bones were soaked in a container containing dilute solution of HCl with a concentration of about 0.15mol/dm3 for a period of 5 days with a daily periodic agitation of the entire content. This dissolved the calcium sulphate, calcium phosphate and other mineral matter leaving the organic matter. Afterwards the acids are washed off thoroughly with distilled water. This ossein (demineralized bone) obtained was then stored for the liming processes.

Liming and Extraction

RESULTS

The results of the characterization of the products obtained and comparisons made with imported gelatin are presented as table 1.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/No</td>
<td>Standard</td>
</tr>
<tr>
<td>1</td>
<td>Colour</td>
</tr>
<tr>
<td>2</td>
<td>Particle Size</td>
</tr>
<tr>
<td>3</td>
<td>pH (10% of Product in Water)</td>
</tr>
<tr>
<td>4</td>
<td>Taste</td>
</tr>
<tr>
<td>5</td>
<td>Smell</td>
</tr>
<tr>
<td>6</td>
<td>Moisture content (%)</td>
</tr>
<tr>
<td>7</td>
<td>Ash content (%)</td>
</tr>
<tr>
<td>8</td>
<td>Yield (%)</td>
</tr>
<tr>
<td>9</td>
<td>Solubility in:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Setting Point (Temp. at which 10% aqueous gelatin solution gels)</td>
</tr>
<tr>
<td>11</td>
<td>Viscosity (mp)</td>
</tr>
<tr>
<td>12</td>
<td>Gel Strength ("Bloom" value)</td>
</tr>
<tr>
<td>13</td>
<td>Isoelectric Point</td>
</tr>
<tr>
<td>14</td>
<td>Decomposition Temp</td>
</tr>
<tr>
<td>15</td>
<td>Combustion Temp</td>
</tr>
<tr>
<td>16</td>
<td>Swell-ability at 30-35°C</td>
</tr>
</tbody>
</table>

Table 1: Results of the physico-chemical analysis of produced gelatin samples and comparison with imported sample. (Values for the Standard are courtesy of Vyse Gelatin Company Inc. 2002 Material Safety Data Sheet)

DISCUSSION

The result of the characterization show that for which ever route followed, the final gelatin properties does not change or affected by the use of either of the mineral acids. Technically speaking there is no significant difference between type A and B grades of gelatin when the conversion of asparagines and glutamine residue to their respective acids and high viscosities is inconsequential (Easestoe, J.E. et al 1958). This is because the major difference in grade is borne from the fact that acid pre-treatment does not convert these substances while the alkaline pre-treatment does (Cole C.G.B. et al 2002). Where an exhaustive purification process is carried out gelatin from any source can be obtained as type
EXTRACTION AND CHARACTERIZATION OF GELATIN FROM COW BONES USING SUBSTITUTE

"A" grade and used for any kind of industrial application, and when proper acid neutralization is carried out, the H₂SO₄ treated collagen material can be employed for pharmaceutical purposes. This is preempted by the result of the microbial analysis from which deduction is made based on the ability of microorganism to feed on the gelatin samples (Schwimmer et al 1957). This makes the possible utilization of these samples (not mending the process treatment steps that is followed) in the pharmaceutical industry.

The cheapest cost of H₂SO₄ when compared to that of HCl (the former is locally produced by some indigenous companies like Duree chemicals plc Kaduna, provides an overall product cheapness, which will boost the profit margin for the entrepreneur who chooses to employ the use of H₂SO₄ as its decalcification agent. The residue, which is primarily dicalcium phosphate and bone meal, will also serve as good sources of phosphorus fertilizer or soil conditioner. This integration system ensures that no part of the raw material feedstock is wasted and there is an enhanced product output capacity with consequent profit maximization.

The defatting solvent, n-hexane is recovered from the process system with less than 2% loss and recycled with out any form of environmental hazard. The fat can be employed in certain industrial applications (soap making, animal feed, etc.) and is another source of revenue for the entrepreneur.

CONCLUSION

It is economically viable to produce gelatin from bones using H₂SO₄ as demineralizing agent. The characteristic properties of the product obtained from H₂SO₄ process does not differ significantly from that of a conventional HCl process. The gelatin product from H₂SO₄ process can be used in the pharmaceutical industry (with exhaustive sterilization) as well as other areas of application like food, photography, cosmetics, coating and sizing of paper protective colloidal applications. The gelatin can also be used to produce matches, adhesive coated abrasives etc.

The setting up of such a plant in the country will cut down our dependence on imported gelatin, while creating jobs and will also reduce the cost of products that use gelatin in their manufacturing process.

The production of value added products like the dicalcium phosphate and bone meal will create a raw material source for the organic fertilizer plan and ensure a perfect zero waste process system (ongoing project work).

H₂SO₄ which is locally and cheaply obtained from our local market (as earlier mentioned in the text), provides a more economical substitute for the production of high grade gelatin material than HCl, which is basically imported costlier.

The H₂SO₄ substitution ensures a 100% locally sourced raw material technical processing of gelatin because the acid is locally produced, the bones locally sourced and the alkali obtained from a locally based company.

ACKNOWLEDGEMENT

We are immensely grateful to Mr. Robert Anger, Wahala Ibrahim and Mr. Alex Akinwemi of the National Research Institute for Chemical Technology (NARICT) Zaria. Our sincere thanks go to Mr. Ogbonna and Mrs. Shola Ojo of the Federal College of Chemical and Leather Technology (CHELITECH), Samaru, Zaria for their whole-hearted assistance during the course of procuring reagents for this work.

REFERENCES

Hill, T.T., 1965 Literature on gelatin. Chapter in Literature resources of the chemical process industries, American Chemical Society, Washington.

Schneier, R. and Seybold, U. 1993 Gelatin Production, the six steps to maximum safety Development in Biological Standardization 80: 195 – 198

Schwimmer, M. and Mulinos, M.G. 1957 Antitoxic medicine and clinical therapy. IV (7). 403-407

