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v ABSTRACT

We develop sufficient conditions for the null controliability of a non-linear infinite delay system with implicit derivative.
Namely, if the uncontrolled system is uniformly asymptotically stabfe, and if the linear control system is controiiable, then by placing

appropriate conditions on the perturbation function f the non-linear perturbed system is null controilable with constraints.
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1. INTRODUCTION
In recent years several authors (0Chukwu, 1979; Dauer, 1976, Hermes and Lasalle, 1969; Onwuatu ,1989) have studied
the controllability of the linear system x()y=AW)x(t)+ B u(r) (1.1)
and the delay system
x(t) = L(t,x,) + B(t) u(t) (1.2). .

and independent results obtained. Controllability studies have been extended to nonlinear systems of various kinds (with or without
delays), (Klamka, 1978, 1980; Yamatoto, 1977) and resuits established from these studies.

Several authors Chukwu, 1980, 1987; Dauer and Gahl, 1977; Nse, 2005 have extended the concept of controllability to nuil
controllability with the help of fixed point theorems.

In this paper, we shall consider the null controllability of the nonlinear infinite delay system with impiicit derivative given by

¥(0) = L(t,x,)+ fr dHsu(t+s)+ [ A+ s)ds +

£t x(8), %), u(t) (13)
x(1)=¢(1)

and develop sufficient conditions for the null controllability of (1. 3) by placing condition on the perturbation function f which

guarantee that if the linear control system is proper and the uncontrolled linear system uniformly asymptotically stable, then the
system (1.3) is null controllable with constraints.

2. BASIC NOTATIONS AND PRELIMINARIES
Let E denote the real line and J = [1,,4,] an interval in E . For a positive integer n, we denote by E” the space of rea! n-

tupples with the Euclidean norm (see Iheagwam, 2003) denoted by ] | . Let A2y 20 be given real numbers (/1 may be + o0)
and the function 77:[~h,0] — [0,00) be Lebesgue integrable positive and non decreasing on [~/,0]
(see Iheagwam, 2003). Let B = B([~h.0],E") be the Banach space of functions which are continuous and bounded on

[— h,O] and such that |¢l = sup |¢(s)| + rh n(s) ¢(s)d s<o (see Sinha, 1985) and for
se(~r.0] -

x:[t—ht] > E", et x,: [-h,0] >E" bedefined by x,(s) =x(t+s) . se[-h0]
We shall consider the infinite delay system given by equation (2.1)

#(0y=L{t.x,) + f, d.H(ts)ut+s)+ [ A@S)x(t+5)ds

(2.1
x(1) = ¢(1)
Its free system will be given by equation (2.2)
x(t)y=L({t,x)+ J'"m A(s) x(t+5)d s (2.2)
and its linear controt baée system given by equation (2.3)
2(0) = Litx) + J" d Ht.s)u(l +5) o 2.3)

where
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N .
Lt.$) =Y 4, $(-h) “ (2.4)
k=0 o ,
satisfied almost everywhere on [to.1,]. L(t.¢) is continuous in 7, linear in ¢ R
(see Davies, 2006). 4 , is a continuous ¥ X 1 matrix function for 0<h, <h. :‘A(.v) is a% 1 X 1 matrix whose elements are
square integrable on (—0,0] and H (£,s) is an #x m matrix valued function which is measurable in (f,5) and of bounded

variaion in § on [~A.0] for each f€[f,.t,]. the controls u are square integrable with values in the umit cube
C"={u:uekE", lu/

To obtain the solution of system (2.1) let X satisfy the equation.

5 l. j=la. m} {see Nse, 2005).

OXWD _ pax .. 21
ot

-X(l 5= 10 I-h<t<l!
- - 1‘, t:1

where X, (-,/)(s)=X (1 +s.0), -h<s<0.
Then the solution of (2.1) will be given by equation (2.5)

x (g o) = x(1.1,.90) + [ X (0.D) f’yd\H(z.s)u(z+s)</1 «
’ (2.5)

+ j:’ XD L fh A(s)yx(l + s)a’sjd! + J:’ X@.h fd.xAhy, x(Dau) dl

Using the unsymmetric Funini’s theorem (see Kiamka, 1980) for f = [, ,’the solution (2.5) of system (2.1) becomes

XUyl ot) = Xty 1y B0 + [ dH[j’ X(DH ()l
’ (2.6)

+['xq ,1)( [ e+ s)dsjdl+ [ X D) fUx DDl
By defining
H, (l,s)= {

equation (2.6) becomes

Xyt §t) = 3ty O+ [ dHV[J:(T‘;VX(t,.l~.v)H(l—s,s)zﬁr/”dl] |

H(l,s), for [<y,
0, SJor 1>t

. j"y dHU X(t,.l—s)H,l’(lws,s)u(l)dl] + [ X(t,.i){fh/t(.s')x(/ +~.s-)dsjdl @7)

o [UXD fOx D)l

Using again the unsymmetric Fubini's theorem on the order of change of integration (2.7) becomes

x(1,. 1y pu) = x(t,.1,.6(0) + J_Oy dH‘[ ,[:+\ X(1,.1 - SYH( - s, s)u,”dl)

/

+ [ [ j“ X1, -s)dH, (1 -s. s)u(l)dl] + [ X(z,.n[ j“,» A(s) x(] + s)ds]df (2:8)
14 ' —h

ty - 1,

[ XD U 5D uDal

For brevity, we introduce the following notations

Z(t,.l.s) = J” X (1,1 -5)dH, (I -5,5) | (2.9)
. 'l . .

and
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G(t.0) = x(t,.1,.4(0)) + j" X0 fUx(), 5 (Dl +

, , o (2.10)
[ X(t,.l)( [ Asxtt +syds |l
(i - i
‘e now define the 1 X » dimensional controllability matrix and other basic definitions of our study.
he controliability matrix of system (2. 1) will be given as .
!, . .
Vt,.1,) = j 20,.0.8) 7 "1, 0. 5) 2.11)
(i

/here the symbol 1 denotes the matrix transpose. The matrix ¥ (£,.1,) is symmetsic and non-negative definite (see Davies,
006)

he reachable set for system (2.1) is given by equation (2.12)

R{1,.1,) = ;{ II Zusdosyudydliwe U 7 . (2.12)

efinition 2.1 The complete state of system (2 1) attime 1 is ={t) = {x(7).x,.u(t)}

efinition 2.2: The system (21) i1s sad to be nuil controliable on [7,.7,]. if for each g€ B([-h.0].E"). there exists a

V2 e (e L) U a compact convex subset

f E", such that the solution X(/.1,.¢. 1) of (2.1) satisfies X, (f,.¢.11) = ¢ and x(,.4,.@.u)=0 (see Nse, 2005)
The following propositions on the controliability of system (2.3) are similar to corresponding results for linear control

ystems of various types including some with delays and some without Hermes and Lasalle, 1969; Onwuatu, 1980 The proofs are
ierefore omitted

roposition 1: The following are equivalent
(.1, 18 non-singutar

System (2.3) is completely controliable on [/,.7, | ¢, >¢.,

System (2 3)1s properon |¢,,.t, ). (, 1,

roposition 2' System (2 3)1s proper on [¢,.¢, ] if and only f O int R (7,.7,)

MAIN RESULTS
Here we give theorems, which summanses result on null controflability of system (2 1)
fieorem 3.1: Assume for system (2.1) that

The constraint set { * 1s an arbitrary compact subset of 1"
The system (2.2) is uniformly asymptotically stable, so that the solution of (2 2) satisfies

Ix(t, g0 < Me "™ 4] for some « ~ 0. A >0

The finear control system (2.3) is controllable
The continuous function f satisfies

f'(l.x(-)..\".(-).u(~})I Sexp(=S0a(x()ut-)) forall ((.xCLXChu()) e,y Bl

here j (v vCrhu(dv<s K< and B 770

en the system (2 1) is Euchdean nulf controliable

roof: By (), W' (1,.1,) exists for each t, > 1, Suppose the par of functions .x. & from a solution pair to the set of integral
jations

(1) = 2O, dus) W ) G 3

rsutably chosen /, 2t 2/

{1) = J"“/‘(l(,./..\')u(/)d/} G 321
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Then u is square integrable on [t(,.t,] and X 1s a soiution of (2.1) corresponding to u with initial state

z(t,) = (x(1,).$.0) where u, = . Also

x(,) = ~IX(/,./)Z’(zr,./..s-)l/l"“'(t(,.tl)[G(/,/)] + Gl =0 ' (3.3)

We now show that u : [{,.1,] — u is in the arbitrary compact constraint subset of E” | that is lul < a , for some constant
a, >0

By (i)

| Z(t ) W 7' (t0,) | < &, for some k, >0 and
| X (1,.1,,8.0) | <k, exp(—o (1, ~1,)) forsome k, >0 Hence,

[u (t)| <k, [kz exp(—oc(t,—1,) + _[" k, exp(—(t, —l)ekp(——Bl)zr(x(.), j'(.),u(.))d/j

and therefore
|u(t)| <k, [k, exp(—ec(t, —1,))] + kk, exp(—cct,) (3.4)
since 3-oc>0 and /21,>0. From (3.4), we see that by taking ¢, sufficiently large, we have ‘u(t) )Sa,. t€t,.1,], which

proves that # is an admissible control for this choice of I
it remains to prove the existence of a solution pair of the equations (3.1) and (3.2).
Let B be the Banach space of all functions (x,u):[1,,~y,t,,E")x[t, =».1,] > E" x E" wnere x € B( [1, ~y.1,). l:"')

and U € Lz([to -7.4.E" )with the norm defined by “ (x.'u)" Sﬂ x“z + “ u
where

I, = H'_.,fx(”lzd’f o e, = [Jjﬂ'_yfu(l)fzd’};

Define the operator
T:8B— B by T(x,u) = (y,v) where

P

vir) = =Z' (1, L)W " (t,0,) G (D), for ted=[t,.1,] : (3.5)
v(t) = o (1) for te[t,~h.t,] .
vy = [ 26, Loyl + G (3.6)

for teJand (1) = @(t) for te[t,—ht,]. We have already shown that lv(t)iﬁa,,le.l and also
|
vilt, - ra, ] U iso [ v(t)| S a, - Hence, v, < a,(t +7-1,)2 = B, Next

|y(0] < kyexp~oc-1)] + &, J: |v(s)|ds + kk,exp(—oxt,) where

k, = sup | Z(t,.l.5)|. Since = > 0. 1 >1,> 0, we deduce that

!)'(/)! <k, +k, 7 (1, -1+ kk,  [loueld and |y(l)| < suplg/)(f)] =d. telt,- ht,] Hence i
|

A = max | .d|. then Jvi, AU vy —1,) = By <> let r=max {f3,.5. | Then letting

B l ‘ B
o) = {(.\'.u) € B:|| x|, < r | wehaveshownthat 7 : Q(r) - Q(r).
Since (J(r) is closed. bounded and convex. by Riesz's theorem (Kantorovich and Akilov, 1982, p. 297), it is relatively compact
under 7 Hence, by the Schauder's fixed point theorem (see Nse, 2005) T has a fixed point, and therefore system (2.1) is
Euclidean null controllable

CONCLUSION

Sufficient conditions for the controllability of the perturbed non-linear systems with implicit derivative have been derived.
These were derived with respect to the stability of the free linear system and the controllability of the linear controllable base

system with appropriate conditions placed on the perturbation f These results complement and extend known result
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