OSMOTIC FRAGILITY INDEX OF HBAA RED BLOOD CELLS IN THE PRESENCE OF AQUEOUS EXTRACTS OF THREE MEDICINAL PLANTS (AFRAMOMUM MELEGUETA, GARCINA KOLA, AND CYMBOPOGON CITRUS).

P. C. CHIKEZIE

(Received 24 January 2007; Revision Accepted 24 April 2007)

ABSTRACT

In vitro study was carried out to ascertain the capacity of normal human adult red blood cells (HbAA genotype) to withstand hypotonicity in the presence of increasing concentrations of aqueous extract of three medicinal plants, Aframomum melegueta, Garcina kola and Cymbopogon citratus. Separate aqueous extracts of the three plant specimen in an increasing order of 0.2%, 0.4%, 0.6% and 0.8% (w/v) were used in this study. The osmotic fragility index of the red blood cells was determined with the use of spectrophotometric method and the result of the control and test samples were statistically compared (p value ≤0.05). The value of mean corpuscular fragility (MCF) (x ± S.D) of the control sample was 4.70 ± 1.7g/l while MCF value (x ± S.D) and the corresponding percentage stability of the red blood cells in the presence of 0.2%, 0.4%, 0.6% and 0.8% (w/v) of aqueous extracts of the three plant specimen were as follows: A. melegueta - 5.85 ± 1.1g/l (24.47%), 5.90 ± 1.3g/l (19.14%), 5.10 ± 0.9g/l (8.61%) and 5.20 ± 0.6g/l (10.54%), G. kola - 5.60 ± 2.2g/l (19.14%), 5.75 ± 2.1g/l (22.34%), 5.30 ± 1.2g/l (12.76%) and 5.70 ± 1.4g/l (21.28%) and C. citratus - 5.10 ± 2.6g/l (8.51%), 4.90 ± 2.5g/l (4.26%), 5.00±2.1g/l (6.38%) and 5.70±2.2g/l (8.61%). There were significant increases (p<0.05) in the MCF values of the red blood cells in the presence of aqueous extract of the three medicinal plants. Therefore the results showed the capacity of aqueous extracts of A. melegueta, G. kola and C. citratus to enhance stability of red blood cell membrane which was indicated by reduced susceptibility of the red blood cells to lysis in the presence of these three plant extracts in hypotonic condition.

KEYWORDS: Osmotic fragility, Aframomum melegueta, Garcina kola, Cymbopogon citratus, means corpuscular fragility (MCF).

INTRODUCTION

A medicinal plant contains one or more substances that can be useful therapeutically or precursor molecules for drug synthesis (WHO, 1979). The biological and pharmacological properties often exhibited by extracts of these plants allow for traditional exploitation of this source for medicinal preparations. Clinically observed therapeutic benefits derived from such plants are usually contributed by their wide varieties of phytochemicals, vitamin and mineral content (Okwu and Ekeke, 2003).

Aframomum melegueta (Alligator pepper) is a herbaceous perennial plant native to swampy habitat along the West African Coast. Its trumpet-shaped, purple flowers develop into 5 – 7cm long pods containing numerous small reddish brown seeds. The seeds have a pungent, peppery taste due to presence of aromatic ketone 6g1 – (4 hydroxy - 3-methoxyphenyl) – decan – 3- one (Okwu, 2005). Alcoholic extract of the seeds is used medicinally in the treatment of intermittent fever, dysentery and gastrointestinal trouble (Agoha, 1974).

Garcina kola (Bitter kola) seeds are served in Nigeria and other West African countries to guest as supplement to true kola nuts. The spherical fruit is about 7 – 12cm in diameter with dark brown covering that can be peeled off before usage. Aqueous/ethanolic extract of the seeds serves many medicinal usefulness. Such as purgative, antiparasitic and microbical actions (Iwu, 1993, Ogui and Ogu, 1995). Okwu (2005), has reported the nutritional and phychochemical contents of A. melegueta and G. kola.

Cymbopogon citratus (Lemon grass) is a member of a small group of aromatic grasses. It is a tropical tufted grass with long sharp-edged blades which usually grows in clumps up to 6 feet high (Kiefer, 2003). C. citratus is widely used as herbal remedies for menstrual pains and nausea (Simon et al., 1984). It's antioxidant and sedative properties when consumed as tea, soup and curies has been noted (Ojo et al., 2000). The plant has equally been reported to cure digestive disorders, gastritis, heart aches and relief muscle cramps and spasms (Gernot, 2001).

Osmotic fragility index is a measure of the resistance of the red blood cells to lysis by osmotic stress (Oyewale and Ajeobe, 1990). Therefore, the present study seeks to evaluate the capacity of the red blood cells to withstand osmotic stress in the presence of aqueous extract of the three medicinal plants. This might give an insight into the property of these plant extracts to promote red blood cells membrane integrity or disintegration.

MATERIALS AND METHODS

Collection of Plant Materials

The seeds of G. kola and A. melegueta and leaves of C. citratus were harvested from a local botanical garden at Umohazi – Inyikhi, Ikeduru Local Government Area in Imo State, Nigeria between the months of June and August, 2006. The plant materials were identified and authenticated by Dr. C.I. Onuoha, Department of Plant and Biotechnology, Imo State University, Owerri, Nigeria.

Sample Preparation

The seeds of A. melegueta, thin sliced samples of G. kola and fresh leaves of C. citratus were washed with distilled water and dried in an oven at 50°C for 24 hours. The samples were pulverized separately with ceramic mortar and pestle.

Extraction of Plant Materials

Aqueous extracts of the dried pulverized plant specimen were prepared by adding 10grams of each separate sample to 100ml of distilled water. The suspension were allowed to stand for 24 hours at room temperature and filtered with Whatman No. 1 filter paper. The filtrate constituted the stock aqueous extracts of the plant specimen (10%w/v) and serial dilutions were made to obtain corresponding aqueous extract concentrations in the order: 0.0%, 0.6%, 0.4% and 0.2%(w/v).

P. C. Chikezie, Department of Biochemistry, Imo State University, Owerri, Imo State, Nigeria.
Determination of Human Red Blood Cells (HbAA) Osmotic Frailty

Red blood cells' osmotic fragility was determined based on the method described by Parpart et al. (1947). The fraction of red blood cells lysed when suspended in varying concentrations of saline solution was determined spectrophotometrically.

A stock solution of buffered sodium chloride, osmotically equivalent to 100 μg NaCl was prepared as follows: NaCl (90g), Na₂HPO₄·2H₂O (17.1g) and NaH₂PO₄·2H₂O (2.43g) were dissolved in 1 litre of distilled water. Dilutions equivalent to 9.0, 7.5, 6.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.0 and 1.0g NaCl respectively were made. Each dilution had a final volume of 50mL. (Chikezie and Ibegbulem, 2004).

5mL of each saline solution (9.0 – 1.0g NaCl) were introduced into corresponding test tubes while 5mL of distilled water was added to the 13th test tube. A 0.5mL of a particular plant extract of a noted concentration was delivered into each of the given set of test tubes (1st – 13th). To each test tube, 0.02mL of warm – mixed CCTA venous blood was added and mixed thoroughly by inverting the tubes several times. For the control experiment, the same set of procedure was repeated but without the added aqueous plant extracts. The suspensions were allowed to stand for 30minutes at room temperature, after which, the content was centrifuged for 5 minutes at 1200g.

Evaluation of Percentage Haemolysis and Stabilization of Red Blood Cells

The absorbance of the supernatants contained in test tubes 1-13 was measured with aid of a spectrophotometer (Models 6400, Jenway) at maximum wavelength (λmax) of 540nm. The ratio of individual absorbance of (1st - 12th) test tubes to the 13th test tube were obtained and multiplied by a factor of 100. These values represent percentage of hemolysed red blood cells at each corresponding saline concentrations (9.0 – 1.0g).

The corresponding concentration of saline solution (NaCl/g) that caused 50% lysis of red blood cells is the mean corpuscular fragility (MCF) value. The relative capacity of the aqueous extracts of the three medicinal plants to stabilize (% stabilization) the red blood cell is calculated as percentage of the ratio of the difference of test and control samples (Tietz, 1976; Chikezie and Ibegbulem, 2004).

Statistical Analysis

The data were analyzed by the use of students’-distribution test of significance as described by Pearson and Hartley (1965).

RESULTS

The results presented in Table 1 showed, blood samples containing aqueous extract of A. meleguetta, G. kola and C. citratus (test samples) exhibited increased MCF values which were significantly different (p<0.05) when compared with the control sample (MCF value = 4.70 ± 1.7g).

Therefore, red blood cells suspended in an environment of aqueous extracts of the three medicinal plants showed enhanced capacity to withstand osmotic stress.

Table 1. Red Blood Cells (HbAA) Mean Corpuscular Fragility and Percentage Stability in the Presence of Aqueous Extracts of A. meleguetta, G. kola and C. citratus.

<table>
<thead>
<tr>
<th>Aqueous Extract</th>
<th>A. meleguetta</th>
<th>G. kola</th>
<th>C. citratus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration(%)</td>
<td>MCF value(g/L)</td>
<td>Stabilization(%)</td>
<td>MCF value(g/L)</td>
</tr>
<tr>
<td>0.0 (control)</td>
<td>4.70 ± 1.7</td>
<td>0.00</td>
<td>4.70 ± 1.7</td>
</tr>
<tr>
<td>0.2</td>
<td>5.85±1.1</td>
<td>24.47</td>
<td>5.85±2.2</td>
</tr>
<tr>
<td>0.4</td>
<td>5.60±1.3</td>
<td>19.14</td>
<td>5.79±2.1</td>
</tr>
<tr>
<td>0.6</td>
<td>5.10±0.9</td>
<td>8.51</td>
<td>5.30±1.2</td>
</tr>
<tr>
<td>0.8</td>
<td>5.20±0.8</td>
<td>10.64</td>
<td>5.70±1.4</td>
</tr>
</tbody>
</table>

MCF values are means of 3 determinations ± S.D.

A cursory look at Table 1 showed that aqueous extract of G. kola exhibited a relative higher tendency to stabilize red cell membrane (12.76% - 22.34%). However, aqueous extract of A. meleguetta at 0.2% concentration showed a single highest capacity to stabilize red cell membrane (MCF = 5.85±1.1g; stabilization(%) = 24.47). A 0.4% concentration of aqueous extract of C. citratus exhibited the lowest capacity to promote red blood cell membrane to withstand osmotic stress (MCF = 4.90±2.9g; stabilization(%) = 4.26).

DISCUSSION

The mechanical stability and resilience of the erythrocyte comes from a partnership between the redox status (Murray, 1993) and underlying cytoskeletal (membrane skeleton) of its plasma membrane (Lux, 1999). Reports have shown that oxidative damage of erythrocyte membrane is the primary cause of reduced capacity of the red blood cells to withstand mechanical and osmotic stress (Laurence et al., 1997 and Mayes, 1993).

Studies have shown the capacity of numerous agents to retard and reduce haemolysis by promoting membrane stability when red blood cells are subjected to osmotic stress. Using human red blood cells, earlier experiments showed that ethanol-water extract of G. kola (Elekwachi, 1996 and Iwu, 1993), aqueous extract of Fagara zanthoxyloides (Sowoh, 1997) and deacetylated chloropromazine (Dean and Schecter, 1979) caused increased capacity of red blood cells to resist osmotic lysis. In a similar vein, the present study showed the capacity of aqueous extracts of the three medicinal plants to increase the MCF value of HbAA red blood cells. The MCF values of the red blood cells at corresponding aqueous extracts concentrations of the three medicinal plants (Table 1), were significantly different (p<0.05) when compared with MCF values of the control sample (4.70±1.7g). However, the reported increased MCF values of the test samples (which was a reflection of the capacity of plant extracts to stabilize the red blood cell membrane) did not exhibit a defined proportionality with the corresponding concentrations of the medicinal plant extracts.

However, the stabilization effect of aqueous extracts of the three medicinal plants on erythrocyte membrane, could be connected with the relative high content of antioxidants and scavengers of free radicals present in these plants. Okwu (2005), reported that A. meleguetta and G. kola are rich sources of phytonutrients such as flavonoids, phenolic compounds and vitamins. Biologically, flavonoids and other related compounds function as potent water soluble super antioxidants and scavengers of free radicals which prevent oxidative damage of cell membrane (Manini et al., 1994).

Also, Simon et al., (1994) noted α tocopherol as the major
OSMOTIC FRAGILITY INDEX OF HBA:a RED BLOOD CELLS IN THE PRESENCE OF AQUEOUS EXTRACTS OF THREE

component of the essential oil present in C. citratus. The best
defined physiologic role of α-tocopherol is its ability to act as an
antioxidant to unsaturated fatty acyl moieties of lipid
component of plasma membrane. Thus, this vitamin protects the
red blood cells membrane against oxidative damage (Horwitt et al., 1956). These are probably the underlying reasons why red blood cells suspended in aqueous extracts of these three medicinal plants exhibited relatively remarkable tendency to withstand lysis in hypotonic conditions.

CONCLUSION

The present in vitro investigation has established that
aqueous extracts of A. melegueta, G. kola and C. Citratus
contained molecular species that are capable of stabilizing
erthrocyte membrane when the red blood cells are suspended in hypotonic solutions. However, the potency of these plant extracts as anti haemolytic agents should be subjected to further in vivo investigation.

REFERENCES

Agotha, R. C., 1974. Medicinal plant of Nigeria. Offset dicker
Facultet Waskunden Naturwanten Schoenen Nederlands pp. 22-158.

on osmotic fragility of HbA:a Red Blood Cells of

Dean, J. And Schechter, A. N., 1978. Sickle cell anemia:
molecular and cellular basis of therapeutic approach.

Elekwa, T., 1996. Effect of aqueous extracts of Garcina kola
seed and Fagara zanthoxyloids roots on human
erthrocyte membrane stability and ATPase activity.


Horwitt, M. K. Harvey, C.C., Duncan, C.D and Wilson, W.C
1956. Effect of limited tocopherol intake in man with
relationship to erythrocyte haemolysis and lipid

on Fagara and the red blood cells, Unife Press, Nigeria pp. 32.


grass. http://www.tripole.oaks,
Com/artiplayp?id = 10.


Lux, S. E., 1999. Dissecting the red cell membrane skeleton.

Maemi, H, Konoshita, M. Fukuyama, Y. Kodama, M
Yoshizawa, T. Sugira, M. Nakagawa, T. Nakagawa, K and
Tago, H., 1994. Antioxidant xanthones from Garcinia
Subelliptica, Phytochemistry 41:533 – 629.

Review of Biochemistry D.W. Martin, P.A. Mayes and
V.N. Rodwell (Eds). Lange Medical Publications,

Illustrated Biochemistry R.K. Murray, D.K. Granner,
P.A. Mayes and V.N. Rodwell (Eds). Lange Medical Publications,

Ogu, E. O. and Ogu, R. C., 1995. A Comparism of some
chemical properties of Garcinia Kola and hope for
assessment of Garcinia brewing value. Bioresource
Technology. 54: 1 – 4.

Inhibition of paracetamol induced oxidative stress in
rats by extract of Xympogon citratus (green tea).
African J. of Biotech. 5:12.

contents of two Nigerian medicinal plants.
International J. of Mot Med and Ad. Sci. 1 41:375 –
381.

and mineral composition of chewing sticks in South
Eastern Nigeria. Global J. Pure and Applied Sci. i:
235 – 238.


26: 636.

Pearson, E. S. and Hartley, H.O. 1968. Biometric Tables for
116 – 117.

Simon, J. E, Cahdwick, A. F., Crackle, L. E., 1984. Herbs and

Soforawa, E. A., 1975 Isolation and characterization of anii
sickling agent from Fagara Zanthoxylon roots.
Lloydia 38:169.

Soforawa, E. A. and Issacs – Sodeye, W. A., 1971 Reversal of
sickling and cation in erythrocytes by the root
extract of Fagara zanthoxylon Lloydia 54:383.

WHO, 1978. Resolution – Drug policies and management:
medical plans; WHO document NO WHO 31/33.