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ABSTRACT 
 
 
Most simultaneous equation models involve the inclusion of 
lagged endogenous and/or exogenous variables and sometimes it may be misleading to assume that the errors are 
normally distributed when in reality they exhibit functional formsthat are not normal especially in practical situations. 
The classical methods of estimating parameters of simultaneous equation models are usually affected by the 
presence of autocorrelation among the error terms. Unfortunately, in practice the form of correlation between the pairs 
of the random deviates is unknown.In this paper classical and Bayesian methods for the estimation of simultaneous 
equation model withlagged endogenous variables and first order serially correlated errors are considered. The 
smallsample properties of the methods at different levels of correlation for ρ =  0.2, 0.5 and 0.8are compared.Better 
parameter estimates were produced by the Bayesian estimator with smaller standard errors compared to the classical 
method. The standard deviations of the Bayesian estimator are consistently better than those of the OLS estimator for 

the sample sizes considered. For example, the standard deviations of the Bayesian for b�� (the coefficient of the 

lagged endogenous variable,y����) when ρ = 0.2 at N = 10, 15, 20 and 25 were 0.07712781, 0.05433923, 0.03230012 
and 0.03177252 respectively while those of OLS were 0.0784732, 0.4718914, 0.05701936 and 1.31422868. However, 
when ρ = 0.8, the standard deviations were 0.0548055, 0.03860254, 0.02572899 and 0.02126175 for Bayesian and 
0.0562190, 0.03882345, 0.053676 and 0.0315632 for OLS. Interestingly, notice that even at high correlation level, the 
estimates produced by the Bayesian method are closer to the parameter values and the standard deviations decrease 
as the sample size increases. Hence, the Bayesian estimation method might be a better choice when lagged 
endogenous variables are included in a simultaneous equation model with auto-correlated disturbances since it 
appeared to give better results compared to the classical approach.  
 
KEYWORDS: Bayesian estimation, Lagged endogenous variables, Simultaneous equations, Monte-Carlo Simulation, 
First-order autoregressive process. 
 
INTRODUCTION 
 
Simultaneous equations model (SEM) is a very 
important field of econometrics. Haavelmo (1943) 
presented some important statistical implications of a 
linear SEM such as estimation of the stochastic 
equations which should not be done separately; the 
restrictions imposed upon the same variables by other 
equations ought to be taken into consideration. 
Simultaneous equations model could be under-
identified, just-identified or over-identified, depending on 
how each parameter of the model uniquely contributes 
to the endogenous variable. The just-identified model, 
where the equations are exactly identified is considered 
in this research work.The indirect least squares method, 
two-stage least squares method, k-class estimators,  
 
 
 
 
 
 
 
 

three-stage least squares method, full information  
maximum likelihood method, Jackknife instrumental 
variable method due to Angrist, et. al. (1999), Lancaster 
(2004) and Blomquist and Dahlberg (1999) methods are 
the well-known classical inferential approaches that 
have been in use. They are majorly extensions of the 
two basic techniques of single-equation methods, the 
ordinary least squares and maximum likelihood 
estimators. The ‘true’ model structure is assumed 
unknown, and is being estimated. However, Dreze 
(1962) argued that such classical inference has a 
shortcoming in that, the available information on 
parameters is ignored; for instance, it is known that the 
marginal propensity to consume is in the unit interval, an 
information that could be made use of. The Bayesian 
inference however combines prior information on the  
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parameter of interest with the likelihood function to give 
the posterior value. The Posterior distribution thus  
provides updated information on the parameter(s) under 
study O’Hagan (1994), Press (1969) and Koop (2003). 
Fair (1970) worked on various classical methods for 
estimating simultaneous equation models with lagged 
endogenous variables and first order serially correlated 
errors. His methods differed in the number of 

instrumental variables used. The asymptotic and small 
sample properties of the estimators were derived to 
ensure consistent estimates.  
Kelejian and Prucha(2004) developed estimation theory 
for a simultaneous system of spatially interrelated cross-
sectional equation, an extension of the widely used 
single equation model of Cli and Ord (1973, 1981). In 
modeling 

the disturbance process, they allowed for both spatial 
correlation as well as correlation across equation. They 
suggested computationally simple limited and full 
information instrumental variable estimators for the 
parameters of the system and gave formal large sample 
results. They introduced both a limited information 
estimator, termed the FGS2SLS estimator, and a full 
information estimator, termed the FGS3SLS estimator, 
and derived their asymptotic properties. The estimators 
are based on an approximation of the optimal 
instruments and as a result they are computationally 
simple even in large samples. 
Fingleton and LeGallo (2008) worked on estimation 
methods for models including an endogenous spatial 
lag, additional endogenous variables due to system 
feedback and an autoregressive or a moving average 
error process. They extended Kelejian, Prucha (1998) 
andFingleton and Le Gallo’s (2006) feasible generalized 
spatial two stage least squares estimators and also 
considered HAC estimation in a spatial framework as 
suggested by Kelejian and Prucha (1999). An empirical 
example using real estate data illustrating the different 
estimators was used. The finite sample properties of the 
estimators were finally investigated by means of Monte 
Carlo simulation. 
Olubusoye and Okewole (2014) considered a two-
equation model containing a combination of just-
identified and over-identified equations. Bayesian 
analysis of multi-equation econometric model as well as 
a Monte Carlo study carried out using WinBUGS 
(windows version of the software: Bayesian analysis 
using Gibbs Sampling). Three different variances; 10, 
100 and 1000were specified to assess the sensitivity to 
the prior variance specification. The result of the Monte 
Carlo study showed that a prior variance of 10 gave the 
smallest mean squared error. The kernel density plots 
also showed that the distribution of the posterior 
estimates from the prior variance of 10 was the closest 
to thedistribution obtained theoretically. 
Adepoju and Idowu(2015) considered a case in which 
lagged endogenous variables were included among the 
predetermined variables to investigate the effects lag 
inclusion on three simultaneous equation estimators. Six 
sample sizes: 20, 30, 40, 100, 500 and 1000 each 
replicated 1000 times were simulated using Monte Carlo 
method. The estimation techniques considered were: 
Ordinary Least Squares (OLS); Two-Stage Least 
Squares (2SLS) and Three-Stage Least Squares 
(3SLS). The estimators were then evaluated using total 
absolute bias, standard error, variance and root mean 
square error of the estimates respectively. The result 
showed that OLS provided the best estimates for all the 
cases considered followed by 2SLS. The presence of 
lagged variables means OLS estimator does not give a 
linear unbiased estimator because of its inconsistency, 
and as a result an instrument variable estimator might 
instead be used. Hence, 2SLS will be the best estimator 
to be used. In assessing the robustness of the 

estimators, two major criteria were employed, namely 
Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (or Schwartz Bayesian Information 
Criterion (SBC)). 2SLS performed better with these 
criteria compared to 3SLS, making it a more robust 
estimator. Finally, all the estimators revealed a 
remarkable asymptotic pattern. 
A comparative study of the classical and the Bayesian 
approaches is thus necessary so as to take advantage 
of their strengths and investigates more on possible 
ways of improving on their weaknesses. The need to 
carry out valid, generally acceptable, appropriate and 
convenient estimation of the SEM has brought about 
quite a number of researches on the classical and the 
Bayesian procedures.  
A research carried out by Gao and Lahiri (2001) focused 
on weak instruments where in cases with very weak 
instruments, there was no estimator that was superior to 
another, while in the case of weak endogeneity, 
Zellner’s MELO (Minimum expected loss), a Bayesian 
procedure, was the best. Their result showed that under 
certain scenario (See Gao and Lahiri, 2001), of all the 
estimators, the BMOM (Bayesian method of moments) 
performed best. However, Jacknife instrumental variable 
estimator, a classical procedure due to Angrist, Imbens 
and Krueger (1999) and Blomquist and Dahlberg (1999), 
had a poor performance throughout. 
These studies reflect some Bayesian estimation 
methods of SEM; BMOM proposed by Zellner, the 
methods used by Chao and Phillips (1998), Geweke 
(1989, 1996), Geisser (1965), Kleibergen and 
Zivot(2003). Others related works on simultaneous 
equation problems areZellner (1971, 1979, 1997a, 
1997b), Nagar (1959 and 1969), Li and Poirier (2003), 
Poirier (1995) and Kleibergen and Van Dijk (1998, 2002) 
and Kloek and Van Dijk(1978). The major objective of 
this study is to compare the asymptotic behaviours of 
classical and Bayesian estimators at different levels of 
first order serially correlated errors. The rest of the paper 
is structured as follows: section 2 specifies the model 
considered in this study, section 3 discusses the 
classical and the Bayesian Methodologies, section 4 
describes the data generation process using the Monte 
Carlo method and section 5 presents the results of the 
experiment while section 6 concludes the paper.  
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THE  MODEL 
 
The model is         y�� =  −a��y�� −  b��x�� −  b��x�� − b��y���� + u��            y�� =  −a��y�� −  b��x�� −  b��x�� − b��y���� +  u��        … (1) 
Where u�� =  ρ�u���� +  V�� u�� =  ρ�u���� +  V�� 
The model in (1) is a just identified model where y�� and y�� are observations on two endogenous variables, y���� and y����  are lagged variables of y�� and y�� respectively. x��, x��,  x��are observations on exogenous variables, v�� 
and v�� are the disturbance terms, a��, b��, b��, b��, a��, b��, b��and b�� are scalar parameters. 
 
The matrix form of our model (1) is 

BY = XΓ + U             … (2) 
 Y = B��XΓ +  B��U� 
Given that  π =  BΓ W� =  B��U� 
Then, Y� =  πX� +  W� 
Where  

B =  + 1 a��a�� 1 -,Γ = (−b�� −b�� 00 −b�� −b��
−b�� 00 −b��) , U =  +ρ�u���� +  V��ρ�u���� +  V��- 

Where Y = (Y�,Y�), a 2×n matrix of observations on two endogenous variables,Γ is a matrix 52× of coefficients for the 

endogenous variables. X is 1×n vector of observations on the predetermined variables, B is a 22×  matrix of 

coefficients for the predetermined variables, and U= (U�,U�) is an 2×n matrix of random disturbance terms where n is 

the number of observations. 
 
To obtain the reduced form of (1), consider the following equations;  y�� =  −a��y�� −  b��x�� −  b��x�� − b��y���� +  u��            … (3)                  y�� =  −a��y�� −  b��x�� −  b��x�� − b��y���� +  u��               … (4) 
Substituting  (3) in (4) y�� =  −a��0−a��y�� −  b��x�� −  b��x�� − b��y���� +  u��1 −  b��x�� − b��x�� − b��y���� +  u�� y�� =  a��a��y�� + a��b��x�� +  a��b��x�� + a��b��y���� −  a��u�� −  b��x�� −  b��x�� − b��y���� +  u�� y�� −  a��a��y�� = 0a��b��x�� −  b��x��1 − b��x�� +  a��b��x�� + a��b��y���� − b��y���� +  u�� −  a��u�� y��01 − a��a��1 =  − b��x�� +  x��0a��b�� − b��1 +  a��b��x�� + a��b��y���� −  b��y���� +  u�� − a��u�� y�� =  �

��234243 0−b��x�� +  x��0a��b�� − b��1 +  a��b��x�� +  a��b��y����  − b��y���� +  u�� −  a��u��1   …. (5) 

Substituting  (4) in (3) y�� =  −a��0−a��y�� −  b��x�� −  b��x�� − b��y���� +  u��1 −  b��x�� −  b��x�� − b��y���� + u�� y�� =  a��a��y�� + a��b��x�� + a��b��x�� +  a��b��y���� − a��y�� −  b��x�� −  b��x�� − b��y���� +  u�� 
=  a��a��y�� + a��b��x�� +  (a��b�� −  b��)x��  −  b��x�� − b��y���� +  a��b��y���� − a��y�� +  u�� y��– a��a��y�� =  a��b��x��   +    (a��b�� – b��)x�� – b��x�� – b��y����  + a��b��y���� −  a��y��  + u�� y��(1 – a��a��) =  a��b��x��  +  (a��b��– b��)x�� – b��x�� – b��y����  +  a��b��y����– a��u��  +  u�� y��  =  �

��243234 0a��b��x��  +  (a��b�� – b��)x�� –  b��x�� –  b��y����  +  a��b��y���� – a��u�� + u��1   …. (6) 

(5) and (6) can be written in a linear form as           y��  =  A�x��  + B�x��  + C�x��  + D�y���� +  E�y���� + γ�u�� + α�u��     .... (7) 
Where 

γ� =  −a��1 − a��a�� 

α� =   11 − a��a�� 

A�  =  −b��1 − a��a��  
B� =  a��b�� − b��1 − a��a��  
C�  =  a��b��1 − a��a�� 
D�  =  −b��1 − a��a�� 
E�  =  a��b��1 − a��a�� 

And y��  =   A�x��  +  B�x�� +  C�x�� + D�y���� + E�y����  +  γ�u�� + α�u��     ….(8) 
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Where 

γ�  =  −a��1 − a��a�� 

α� =   11 − a��a�� 

A�  =  a��>��1 − ?��?�� 
@� =  ?��>�� − >��1 − ?��?��  
A�  =  −>��1 − ?��?�� 
B�  =  ?��>��1 − ?��?�� 
C�  =  −>��1 − ?��?�� 

(7) and (8) are: D�E  =  F�G�E  +  @�G�E  + A�G�E  + B�D�E�� + C�D�E�� + H�I�E +  J�I�E     … (7) D�E  =   F�G�E  +  @�G�E +  A�G�E +  B�D�E�� + C�D�E��  + H�I�E + J�I�E     …  (8) 
The two equations (7) and (8) are used to determine the values of the endogenous variables at each point in terms of 
the predetermined variables and structural disturbance terms. 
 
2.0 Classical and Bayesian Methodology 
 
3.1 Classical Methodology 
Given a model D∗ = L∗M + N∗            …(9) 

Where D∗= Py,L∗ = PX and N∗ = PN.Since O is a positive definite matrix, it follows that there exists an NN × matrix P 

such that P OPQ = RS 
The Ordinary Least Squares method estimatesare obtained as follows, N =  D∗ − L∗M N�N =  (D∗ − L∗M)�(D∗ − L∗M) 

By differentiating with respect toM, we have T(N�N)TM =  −L∗�L∗M +  L∗�D∗ 

Equating to zero, the estimate of M gives MU =  (L∗�L∗)��L∗�D∗           … (10) MU =  (G�O��G)��G�O��D 
3.2 Bayesian Methodology 
 
Given a model D∗ = L∗M + N∗   …(11) 

Where D∗= Py,    L∗ = PX and N∗ = PN.Since O is a positive definite matrix, it follows that there exists an NN × matrix 

P such that P OPQ = RS 

The vector of disturbance terms V, is assumed to be a normal distribution with mean0and covariance W�, N(0 , ℎ��) 

where ℎ = W��, the error precision.  
 
3.2.1 The Likelihood Function 
 

Using the definition of the multivariate normal density, the likelihood function for the model can be written as:     

P(D|M, ℎ) = Y3 4⁄
(�[)\ 4⁄ ]O� �⁄ ^G_ `− Y

� aD∗ − L∗MUbcO��aD∗ − L∗MUbde ]ℎf �⁄ ^G_ `− Yf
�gh4de    … (12) 

where, i = j − k, Mlm = (LQ∗L)��LQ∗D is the ordinary least squares estimator and            

n� = aD∗ − L∗Mom bcaD∗ − L∗Mom bi  

is the variance for the error (Mean Square Error). 
  
3.2.2 The Priors for Normal Linear Regression Models (NLRM) 
 

Since the likelihood function of models determines the structure or distribution of the prior especially for easy 
interpretations and computations therefore, the natural conjugate prior Normal-Gamma density is used. Thus, if we 

elicit a prior for Mconditional on ℎ of the form: M|ℎ ~ j(M∗, r∗)           … (13) 

and a prior for ℎ of the form:  ℎ ~ s(n∗��, i∗)           … (14) 
then, the joint prior for the two parameters is given as: Mℎ = (M|ℎ ×  ℎ) ~ js(M∗, r∗, n∗��, i∗)        …  (12)  
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3.3 The Posterior for (NLRM) 
 

The posterior will also have Normal-Gamma density of the form: M, ℎ|B ~ js(M∗, r∗, n∗��, i∗)          … (16) 
Where:  r∗ = (r∗�� + ℎL∗cL∗)��           … (17) M∗ = r∗(r∗��M∗ + L∗cL∗MU)          … (18) i∗ = i∗ + j 

andn∗�� is defined implicitly through: i∗n∗� = i∗n∗� + u(D∗ − L∗MU) O��(D∗ − L∗MU)v��
        … (19) 

 
3.4 The Posterior Means and Variances of Parameters in NLRM 

 

By integrating out from (16), it gives the marginal posterior distribution for M which is a multivariate t distribution given 
as:  

 M|ℎ ~ j(M∗, n∗�, r∗,   i∗)          … (20) 
The mean, C(M|ℎ) = M∗ = r∗L∗cD∗           … (21) 
and the variance,    

r?w(M|ℎ) = f∗g∗4
f∗�� r∗           … (22) 

while posterior for the precision given the data follows the gamma distribution: ℎ M⁄  ~ s(n∗��, i∗)           … (23) 
then the mean, C(ℎ M)⁄ =  n∗��            … (24) 
and the variance, 

i?w(ℎ M)⁄ =  �g∗h4
f∗            … (25) 

 
3.0 Generation of Monte Carlo Data 
 

The main task is the generation of stochastic dependent (endogenous variables) x�Eand x�E which are subsequently 
used in estimating the parameters of the model.  
To achieve this, the following have to be assumed 

(i) Values of the predetermined variables L�E , L�E,L�E  (y = 1,2,3, … , |) 

(ii) Values of the parameters ?��, ?��, >��, >��, >��, >��, >��, >��.  
The simulation of the error term V�E (y = 1,2,3, … , |) is the importantin generating stochastic dependent variables. To 
set up the Monte Carlo experiment, we proceed as follows: 
(i) The sample size N is specified as N = 10, 15, 20, 25. 
(ii) Numerical values are assigned to each of the structural parameters as follows; ?�� = 0.5,  >�� = 1.5,  >�� = 1.5,  >�� = 1.5,  ?�� = 0.5,  >�� = 1.5, >�� = 0.5, >�� = 0.5 }� =  }� = 0.2, 0.5 ?~T 0.8for all cases 

(iii) L�E , L�E,L�E are generated from a uniform(0,1), Kmenta (1971) 

(3) Hyper parameters assumed for prior distribution of the Bayesian approach are: 

 ℎ = 20, M∗ =  �000� , r∗ =  0���,  n∗�� = �
Y , i∗ = 1 

 
4.1Generation of Random Disturbance Terms, U 
This is the method of generating a random disturbance terms V�E , ?~T V�E. 
Recall that  I�E =  }�I�E�� +  r�E I�E =  }�I�E�� +  r�E 
4.1.1Generation of Random Disturbance Terms, V 

This is the method of generating a random disturbance terms r�E , ?~T r�E. Oisthe variance-covariance matrix (rErQE) decomposed into the non-singular upper triangular matrix P� and lower 
triangular matrix P�. 

O =  P�P� =  �W�� W��W�� W��� =  �4.0 1.51.5 3.0� 

Where V?w (r�E) = W��, Var(r�E) = W�� and cov(r�Ei�E) = W�� =  W�� 

Let P� =  �}�� }��0 }��� be upper triangular matrix and  

 

P� =  +}�� 0}�� }��-be lower triangular matrix. 

Now   
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O =  P�P� = �}�� }��0 }��� +}�� 0}�� ρ��- =  �W�� W��W�� W��� =  �4.0 1.51.5 3.0� 

 }���+ }��}�� = 4.0 }��}�� = 1.5 }��}�� = 1.5 }��� = 3.0 
Solving the above four equations; }�� = 1.802776  }�� =  0.8660254 }�� =  0.8660254 }�� = 1.732051 
Thus, the pair of standard deviates can be transformed into pair of random normal variables using  

�r�Er�E� =  P�N�E =  �}�� }��0 }��� `N�EN�Ed =  �1.802776 0.86602540 1.732051 � `N�EN�Ed 
r�E =  1.802776N�E +  0.8660254N�E r�E =  1.732051N�E 
 
Making use of the data generated, the parameter estimates are obtained using the classical and the Bayesian 
methods. The following criteria are used in comparing the two estimation methods: Meanand Mean Squared Error 
(MSE) of the estimates. 
 
4.2 Generation of Endogenous Variables 
 
With the numerical values already assigned to the structural parameters, we have all the values required for the 

generation of the endogenous variables. Considering the AR(1) for the disturbance terms  V�E , ?~T V�E given below:  I�E =  }�I�E�� +  1.802776N�E +  0.8660254N�E 
   I�E =  }�I�E�� +  1.732051N�E    
  
Solving D�E and D�E given in equations (7) and (8) above after estimating the resolved parameters with the assumed 
structural parameters, then we have D�E  =  F�G�E  +  @�G�E  + A�G�E  + B�D�E�� + C�D�E�� + H�I�E +  J�(}�I�E�� +  1.802776N�E +  0.8660254N�E) …(26) D�E  =   F�G�E  +  @�G�E +  A�G�E +  B�D�E�� + C�D�E��  + H�I�E + J�(}�I�E�� +  1.732051N�E)… (27) 
Where  ^�E and ^�E are generated from N(0,1). The estimation of the disturbance terms  V�E , ?~T V�E are generated 
recursively using the given model above. 
 
Estimation of the structural parameters 
 
Having generated the values of exogenous and endogenous variables as well as disturbance terms, the next step is 
the estimation of the structural parameters for 0.2, 0.5 and 0.8 correlation levels. These structural parameters are 
obtained using statistical softwarecalled R (version 3.3.3). 
 
Criteria for evaluating the performance of the estimators 
 
For easy comparison and evaluation of the performance of the estimators, the following criteria are used. 
(i) Mean values of the parameter estimates. 
(ii) Standard deviation 
The following classical estimation methods used in this study are: OLS and Bayesian approach. 
 
Result and Discussion 
 
The point estimates’ summary presented in Tables 1-3 
reflect some properties of the two estimation methods 
under discussion. Interestingly, the results of the OLS 
and Bayesian inference are not too different. Table 1 

gives the estimates of the two estimators for 2.0=ρ  

and sample sizes 10, 15, 20 and 25. In all cases, the 
standard deviations of the parameter estimates 
decrease as the sample size increases. However, the 
Bayesian method performs better than the OLS since it 
produces smaller standard deviations. The observations 
in Table 1 are similar to those recorded in Table 2 when

5.0=ρ , the standard deviations also are smaller for 

both estimators. Interestingly, the parameter estimates 

and the standard deviations are closer for the two 

estimators. In Table 3 for 8.0=ρ , the estimates are 

much closer to the parameter values than for the other 
cases considered.  The standard deviations produced 
are also better for Bayesian than for the OLS estimator 
but closer. 
Clearly, as the sample size increases, standard errorsof 
the estimators decrease. In Table 3, where the rho of 

the error term (^E) was raised to 0.8, the estimates from 
the two methods were more concentrated around the 
class containing the true value than in the first and 
second Tables where the rho(s)were 0.2 and 0.5 
respectively. This is an indication that the distribution of 
the exogenous variables also affects the properties of 
the estimators. We noticed that  
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in Tables I and 2, the standard deviation was questionably large for the classical method when N=20, this is as a 
result of the characteristic of the Bayesian method. 
 

Table 1: Estimates and the standard deviations (in parenthesis) of the estimators for 2.0=ρ  at different 

sample sizes 

ρ = 0.2 OLS 

 H�� = 0.5 >�� = 1.5 >�� = 1.5 >�� = 1.5 H�� = 0.5 >�� = 0.5 >�� = 1.5 >�� = 0.5 

1
0 

1.1421583 
(0.0572104) 

1.5029686 
(0.0784732
) 

1.6644831 
(0.3278941) 

2.219356 
(0.5451088
) 

0.3208768 
(0.01090927
) 

0.8830466 
(0.0544476
2) 

2.0694503 
(0.9047328
8) 

0.9273410 
(1.9018776
) 

1
5 

0.3160969 
(0.2292887) 

1.7611213 
(0.4718914
) 

1.4866595 
(0.5300868) 

1.5144441 
(0.1529465
) 

0.7042131 
(0.06525014
) 

0.1963875 
(0.7586613
1) 

1.1175546 
(0.9176295
) 

0.7226590 
(0.6401652
) 

2
0 

0.41211335 
(0.02786158
0) 

1.6257235 
(0.0570193
6) 

1.8311398 
(2.00261405
9) 

2.3247171 
(1.7578380
1) 

0.56933820 
(0.00797934
9) 

0.2622496
5 
(0.0938929
5) 

1.3333233
7 
(1.2684381
5) 

0.4862227 
(1.3921135
2) 

2
5 

0.7180436 
(0.6298178) 

1.1882123 
(1.3142286
8) 

2.0203616 
(3.4520269) 

1.2963440 
(0.1791496
) 

0.51686675 
(0.03141017
) 

0.4421280
3 
(0.3696435
) 

0.8557487
8 
(0.9243170
7) 

0.6532876 
(0.9554101
9) 

 

ρ = 0.2 Bayesian 

 H�� = 0.5 >�� = 1.5 >�� = 1.5 >�� = 1.5 H�� = 0.5 >�� = 0.5 >�� = 1.5 >�� = 0.5 

1
0 

1.1434892 
(0.0545108
8) 

0.5014273 
(0.0771278
1) 

1.6648094 
(0.3505647
5) 

2.2120594 
(0.4196216
4) 

0.3205546 
(0.0365487) 

0.8822516 
(0.0813906
3) 

2.0776748 
(0.3340047
0) 

0.9137493 
(0.4778911
5) 

1
5 

0.3152768 
(0.0378836
1) 

1.7642284
7 
(0.0543392
3) 

1.4900361 
(0.2021954
9) 

1.5124157 
(0.1664597
3) 

0.7047816 
(0.01747366
) 

0.1983340 
(0.0595862
6) 

1.1316252 
(0.2944830
3) 

0.7074965 
(0.3377536
0) 

2
0 

0.4124684 
(0.0225786
5) 

1.6252441 
(0.0323001
2) 

1.8359105 
(0.1984187
0) 

2.3157619 
(0.1873965
) 

0.5691561 
(0.01091812
) 

0.2628744 
(0.0374523
3) 

1.3290222 
(0.1393492
2) 

0.4475114 
(0.1442782
4) 

2
5 

0.7167002 
(0.0222107
6) 

1.190095 
(0.0317725
2) 

2.017005 
(0.1348537
) 

1.298164 
(0.1395118
8) 

0.61202877 
(0.00917314
5) 

0.1156674
3 
(0.0333209
5) 

1.9126947
4 
(0.1627291
) 

0.8835209 
(0.2253054
) 

 
 
 

Table 2: Estimates and the standard deviations (in parenthesis) of the estimators for 5.0=ρ at different 

sample sizes 

   ρ = 0.5 OLS    

 H�� = 0.5 >�� = 1.5 >�� = 1.5 >�� = 1.5 H�� = 0.5 >�� = 0.5 >�� = 1.5 >�� = 0.5 

10 1.1761813 
(0.044145
3) 

1.4410236 
(0.061511
7) 

0.9147995 
(0.297269
51) 

2.5023112 
(0.368898
43) 

0.4511492 
(0.00035240
65) 

0.5383666 
(0.00035240
6) 

0.5383666 
(0.0020482
01) 

2.0958359 
(0.0256016
2) 

15 0.0910283
3 
(0.036574
3) 

2.0898200
7 
(0.051209) 

1.4082559 
(0.263256) 

1.2749145
6 
(0.241023
45) 

0.8319344 
(0.05624101) 

0.6324357 
(0.6524169) 

1.2125793 
(0.1847154
6) 

0.7570141 
(0.2183754
) 

20 0.7318313 
(0.022067
59) 

1.1682133 
(0.031561
3) 

1.4259474 
(0.146604
61) 

0.6944928 
(0.171123
4) 

0.7746194 
(0.00973088
9) 

0.4421004 
(0.11482429
) 

1.7489464 
(3.5765630
02) 

0.1959167 
(3.1113096
8) 

25 0.5103722 
(0.019123
45) 

1.4851723 
(0.028100
1) 

1.2524993 
(0.183521
34) 

0.3118128 
(0.141022
31) 

0.5017188 
(0.00600565
8) 

0.4941017 
(0.07067673
) 

2.1125059 
(2.4343532) 

0.3621733 
(2.6764733
3) 
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  ρ = 0.5 BAYESIAN    

 α�� = 0.5 b�� = 1.5 b�� = 1.5 b�� = 1.5 α�� = 0.5 b�� = 0.5 b�� = 1.5 b�� = 0.5 

10 1.17714935 
(0.0453265
3) 

1.4403528
1 
(0.061511
71) 

0.91902185 
(0.29726951
) 

2.49827389 
(0.3799050
2) 

0.4502320
0 
(0.034131
34) 

0.53957013 
(0.0825657
0) 

2.00089610 
(0.2950760
9) 

0.88764138 
(0.42661995) 

15 0.09056807 
(0.0302833
0) 

2.0904888
8 
(0.043568
33) 

1.41928099 
(0.26928842
) 

1.27990678 
(0.2378773
8) 

0.8321559 
(0.015672
61) 

0.6331881 
(0.0533835
2) 

1.2019080 
(0.2924038
0) 

0.7706201 
(0.31745358) 

20 0.7326059 
(0.0220675
9) 

1.1671041 
(0.031561
30) 

1.4292734 
(0.14660461
) 

1.6983903 
(0.1750753
0) 

0.7750681 
(0.017800
7) 

0.4436400 
(0.0369822
7) 

1.7559164 
(0.2094849
2) 

1.1877835 
(0.2017413) 

25 0.5112107 
(0.0193439
6) 

1.4839758 
(0.027671
56) 

1.2555160 
(0.18387260
) 

1.3102501 
(0.1398226
9) 

0.5017090 
(0.007256
89) 

0.4941637 
(0.0072565
89) 

0.4941637 
(0.0248937
60) 

2.1148511 
(0.14645878
3) 

 

Table 3: Estimates and the standard deviations (in parenthesis) of the estimators for 8.0=ρ  at different 

sample sizes 

ρ = 0.8 OLS 

 α�� = 0.5 b�� = 1.5 b�� = 1.5 b�� = 1.5 α�� = 0.5 b�� = 0.5 b�� = 1.5 b�� = 0.5 

1
0 

1.1281097 
(0.052104
2) 

1.5208754 
(0.0562190
) 

1.8051547 
(0.2711123
) 

1.197716 
(0.3432230
1) 

0.5057598 
(0.1134199) 

0.1273185 
(0.9435939
) 

2.9259913 
(1.8186495
) 

1.2880730 
(0.7568514) 

1
5 

0.0963155
8 
(0.027123
) 

2.0811050
6 
(0.0388234
5) 

0.5888471
2 
(0.3412390
) 

1.4897914
3 
(0.2621345
) 

0.4793415 
(0.01632354
6) 

0.5697210 
(0.1936433
) 

2.2842028 
(3.7876815
) 

0.8204916 
(2.04389767
7) 

2
0 

0.602517 
(0.126762
) 

1.362004 
(0.053676) 

1.379061 
(0.1823565
) 

1.5232258 
(0.1712343
6) 

0.62130628 
(0.01220953
) 

0.8387021 
(0.1436817
6) 

2.1950165
0 
(3.7071736
1) 

1.43993070 
(4.26144596
) 

2
5 

0.5198012 
(0.033672
) 

1.4716723 
(0.0315632
) 

1.4049989 
(0.1999123
5) 

1.9616000 
(0.1523100
1) 

0.7959777 
(0.09455589
) 

0.5153297 
(1.1127633
) 

1.5191538 
(2.3500002
7) 

0.5472089 
(3.50871302
) 

 

ρ = 0.8  BAYESIAN 

 α�� = 0.5 b�� = 1.5 b�� = 1.5 b�� = 1.5 α�� = 0.5 b�� = 0.5 b�� = 1.5 b�� = 0.5 

1
0 

1.1284892 
(0.0433065
3) 

1.5214703 
(0.0548055
) 

1.7979201 
(0.2622692
3) 

1.1956277 
(0.3528980
6) 

0.5050173 
(0.0436710
2) 

0.1279974 
(0.1274456
) 

2.9187457 
(0.4787587
5) 

1.2932701 
(0.4159199
7) 

1
5 

0.09528057 
(0.0268096
9) 

2.08260447 
(0.0386025
4) 

1.61869281 
(0.3377917
0) 

1.51750440 
(0.2544058
8) 

0.4790739 
(0.0127669
4) 

0.5706361 
(0.0439680
7) 

2.2899869 
(0.1957923
2) 

0.8177730 
(0.1445121
4) 

2
0 

0.6028221 
(0.0179524
9) 

1.3615206 
(0.0257289
9) 

1.3817440 
(0.1528073
7) 

1.5190742 
(0.1702161
0) 

0.62114229 
(0.1097389
) 

0.8443285 
(0.0376459
6) 

2.19989414 
(0.1953736
4) 

1.44829506 
(0.2106177
5) 

2
5 

0.520191 
(0.0148631
5) 

1.471090 
(0.0212617
5) 

1.404523 
(0.1895278
1) 

1.963403 
(0.1422138
0) 

0.7956012 
(0.0072245
4) 

0.5140112 
(0.0247837
9) 

1.5248470 
(0.1139094
) 

0.5464498 
(0.1381035
) 
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DISCUSSION 
 
Tables 1-3presented above reflect some properties of 
the two estimation methods under discussion. For the 
classical method, the OLSwas considered because they 
give the same estimate for this model being a just-
identified model. For all the sample sizes considered 
under different correlation levels, the Bayesian 
estimates performed better than the classical estimates 
mostly for the small sample cases.  
The performance of the two estimators was considered 
for a two-equation simultaneous model with lagged 
endogenous variables and auto-correlated errors. This 
study is similar to the work of Fair (1970), though Fair 
used classical approaches with different instrumental 
variablesand merely derived asymptotic and small 
sample properties of the estimators without estimating 
the parameters of the model but in this work, Bayesian 
approach is used to estimate the parameters of the 
simultaneous equation with lagged endogenous 
variables and first serially correlated error terms and the 
results compared with the classical method.  
The parameters of equations 1 and 2 are assumed to 

beα�� = 0.5,b�� = 1.5, b�� = 1.5,b�� = 1.5 and α�� = 0.5, b�� = 0.5,b�� = 1.5, b�� = 0.5 respectively. Auto-
correlated error was set at rho= 0.2, 0.5 and 0.8(low, 
moderate and high correlation levels). The distribution of 
these estimates was closer for the two estimation 
methods. As expected, as the sample size increases, 
the standard error of the estimators reduces. At rho = 
0.2, the estimates from the Bayesian method was more 
concentrated around the true value than in the classical 
method considered, this is an indication that the lag of 
the exogenous variables also affects the properties of 
the estimators. It is noticed that at rho = 0.5, which 
implies moderated auto-correlated level, the standard 
deviations are questionably large for the classical 
method when N=20 and N= 25, this is as a result of 
lagged endogenous variables that are uncharacteristic 
of the Bayesian method. 
 
CONCLUSION 
 
Estimation of simultaneous equation model in 
econometric research should be approached with care. 
The choice of estimation method as observed in this 
research work affects the estimates in terms of bias and 
consistency especially when dealing with small samples. 
The Bayesian estimation method has gained a lot of 
attention recently which makes practical statistical 
inference more interesting(Lahiri et. al. (2000),Herman 
and Dijk (2002)). The present study showed that the 
Bayesian estimation method performs better than the 
classical for smaller sample sizes but it becomes simply 
impossible to estimate the parameters when the sample 
size is large.The model in this study is a just identified 
model, and the classical estimation method give 
relatively close estimates to the assumed parameter 
values. The Bayesian estimation method being more 
easily applied might be a better choice since it appears 
to give better results compared to the classical 
approach.  
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