
 DOI: https://dx.doi.org/10.4314/gjpas.v25i1.10

GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 25, 2019: 71-79

COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579

www.globaljournalseries.com, Email: info@globaljournalseries.com
AN EXPLORATIVE SURVEY OF FORMAL AND AGILE SOFTWARE
DEVELOPMENT METHODS

 OYONG, S. B. AND EKONG, V. E.

 (Received 17 September 2018; Revision Accepted 12 December 2018)

ABSTRACT

This research work explores the trends in formal and agile software development methods. Software development has
evolved, from the era of “code and fix” to methods categorized as “heavyweight” and “lightweight”. The heavyweight
methods are championed by the waterfall method, while agile methods are considered the lead in lightweight methods
of software development. Both methods have proven records of successes and failures. Bridging the divide between
them and harmonizing their symbiotic properties has the synergy of creating beneficial and more robust methodology
with complementary advantage which is termed ambidexterity.
Ambidexterity allows for a high level approach of selecting a methodology on the basis of the problem requirements,
and coordinates their independent processes complementarily without conflict.

KEYWORDS: Global Software Development, Agile Software Development, off Shoring, Near-shoring, Distribution

1.0 INTRODUCTION

Many software development methods have been
created in the past four decades, and utilized in the
software industry. Each method has different features
and characteristics that distinguish one from another.
These methods can be classified into two groups: the
heavyweight methods, also called traditional methods,
which focus on comprehensive planning, heavy
documentation and big design up-front (Boehm and
Turner, 2003; Fruhling and De Vreede, 2006). The
lightweight methods concentrate on the software
development team and their interactions, rather than on
the required processes and tools. It also focuses on
developing working software that evolves from intense
customer collaboration (Bech, Beedle, Bennekum,
Cockhurn, Cunningham, et al., 2001).

The traditional methods are still widely used in the
software industry because of their straightforward,
methodical, and structured nature; they have proved
their abilities to provide high assurance, stability, and
productivity. However, they have a number of
shortcomings, which include (Boehm, 2002; Boehm and
Turner, 2003; Brooks, 1975; Schach, 2004):

• Slow adaptation to constantly changing
 business environments

• A tendency to be over budget

• They always work behind schedule

• Delivering fewer features and functions than

• specified in the requirements

• They also usually need a complete set of
 requirements prior to design,

• Resulting in vague user specifications.

As a remedy to the short comings of the traditional
methods, Agile software development methods were
created and used by practitioners. A number of Agile
development methods evolved, and they include
(Goldman, Kon, Silva, Yoder, 2004; Cockburn, 2006;
High smith and Cockburn, 2001):

• Adaptive software Development (ASD)

• Agile Unified Process (AUP)

• Crystal Methods

• Dynamic Systems Development Methodology
 (DSDM)

• Extreme Programming (XP)

• Feature Driven Development (FDD)

• Kanban

• Lean Software Development

• Scrum

• Scrumban

 By their characteristics, they focus mainly
 on:

• Iterative and incremental development

• Customer collaboration

• Software product delivery occasioned by a light
 and fast development cycle

71

Oyong, S. B., Department of Computer Science, Faculty of Science, University of Uyo, Akwa Ibom State, Nigeria.

Ekong, V. E., Department of Computer Science, Faculty of Science, University of Uyo, Akwa Ibom State, Nigeria.

© 2019 Bachudo Science Co. Ltd. This work is Licensed under Creative Commons Attribution 4.0 International License.

• Adaptation to changing customer and business
 requirements.

The potential benefits of Agile methods notwithstanding,
many organizations are reluctant to throw away their
traditional methods, and jump into Agile methods. Their
reluctance is as a result of several issues including:

• Agile methods reduce documentation and rely
 on tacit knowledge

• These methods have not been sufficiently tested
 for mission-critical projects

• There is the belief that Agile methods are good
 only on small and medium scale projects, and
 not large scale projects.

• A concern that Agile methods can be successful
 only with talented individuals

• Agile methods are not adequate for high and
 stable projects

Although many positive aspects of Agile methods have
been published, there are few empirical studies on the
negative aspects of Agile methods. The negative
aspects of Agile methods imply that there are issues,
problems, and challenges faced in developing high
quality software products using these methods.
Identifying the problems, issues, and challenges of Agile
methods should be more beneficial to organizations
propagating them than merely showing their positive
benefits.
More so, since only the positive aspects of Agile
methods are receiving publicity, it is not clear whether
Agile methods can provide end users with the desired
quality, in a timely manner, on large-scale and mission-
critical projects. Therefore, the need to identify the
issues and challenges of Agile methods and assess the
possible application of Agile methods on large-scale and
mission-critical projects cannot be over emphasized. It is
intended that through an explorative research approach
we can uncover these issues.

1.1 STATEMENT OF THE PROBLEM
The few empirical field studies of the negative aspects of
Agile software development methodologies have failed
to identify how the methods can still be useful to
organizations, and have not assessed their possible
application for large-scale and mission-critical projects.

1.2 AIM
The aim of this research work is to explore possible
ways of using Agile methods in the development of
large-scale and mission-critical projects

1.3 OBJECTIVES
To propose ahybrid framework based on ambidexterity
that would take advantage of their comparative
strengths.

2.0 LITERATURE REVIEW
The review of both failures and successes in the
literature will be beneficial in identifying the possible
success factors in Agile software development projects
as failure can contribute to the understanding of how to
avoid certain serious pitfalls that are critical to the
success of a project (Chow and Cao, 2007). Cohn and
Ford (2003) studied problems in transitioning

organization to ASDM processes, while Larman (2004)
discussed in detail mistakes and misunderstandings
occurring in ASDM projects.
Boehm and Turner (2005) emphasized on management
challenges in implementing Agile projects; whereas
Nerur, Mehapatra, Mangalaraji (2005) covered problems
not only in management aspects, but also in people,
process, and technology dimensions of migrating to
Agile projects.

2.1 TRADITIONAL SOFTWARE DEVELOPMENT
 METHODS
The early stages of software development can be
summarized as “code and fix, code-some-more, fix-
some-more” (Fowler, 2005; Leffingwell, 2007). This was
the first generation in the history of software
development methods. The fundamental concept of the
scheme was to write code first without considering pre-
planning and pre-designing, and to fix bugs later. This
method worked well for small scale and relatively simple
projects. However, as the size of projects increased,
developers realized that they were spending more time
in fixing bugs and writing code; thus reducing efficiency
and predictability of software development.
The traditional software development concept was
borrowed from the engineering discipline, which puts
heavy weights on precise planning. Engineering
discipline –based development method was more or
less plan driven where the documentation of a complete
set of requirements preceded architectural and high-
level design, development and implementation (Awad,
2005). These methods require extensive planning,
codified processes, and rigorous reuse (Boehm, 2002).
This plan also works best when developers know all the
requirements in advance, and when requirements are
relatively stable (Hickey and Davis, 2004; Schach,
2004).Due to these factors, the methods came to be
known as heavyweight methods and are also
considered traditional software development methods
(TSDMs).
Practitioners and academia alike revisited alternative
ways of developing software such as iterative,
incremental development, and close customer
involvement (Royce, 1970). Agile software development
methods (ASDMs) were some of the methods that fitted
into these characteristics, and even more (Goldman et
al, 2004; Cockburn, 2006). Agile methods have had
inroads into traditional software development
methods(TSDM), even at areas where it was thought
impossible. Such areas include (Mockus and Herbsleb,
2001):

• Interdependencies among work items that are
 distributed

• Difficulties in coordination

• Conflicting implicit assumptions

• Communication challenges,

The link between Agile methods and TSDM is needed
for frequent communication (Nisar and Hameed, 2004;
Simons, 2002). After all, what are new about Agile
methods are not the practices they use, but their
recognition of people as the primary drivers of project
success, coupled with an intensive focus on
effectiveness and how to overcome the problem
(Highsmith and Cockburn, 2004). This results in a new

 72 OYONG, S. B. AND EKONG, V. E.

combination of values and principles that define an Agile
world view. These differences of Agile methodologies
include:

• People oriented – Agile considers people –
customers, developers, stakeholders, and end users as
the most important factor of software
methodology (Highsmith and Cockburn, 2005)

• Adaptive – The participants in Agile process
welcome change at all stages of the project. Change to
the requirements always gives the team members
an opportunity to learn more of what it will take to satisfy
the market (Fowler, 2004).

• Conformance to actual – Agile methods value
conformance to actual results as against detailed plan. It
was observed that each iteration or development
cycle adds business value to the ongoing project, which
is always propagated by the client (Highsmith,
2002).

• Balancing flexibility and planning. – Plans are
good, but the truth is that software projects cannot be
accurately predicted far into the future, because there
are so many variables to take into account. Agile
believes that a better strategy to use is to plan for a
week or two, beyond that, the plan should be loose
 (Highsmith, 2000).

• Empirical process – In Engineering, processes
are either defined or empirical. Agile processes choose
to implement empirical processes, because of the
expected changes. Williams and Cockburn (2003)
opined that it is highly unlikely that any set of
predefined steps will lead to a desirable, predictable
outcome because requirements
change,technology changes, people are added and
taken off the teams.

• Simplicity – Agile methods always take the
simplest path that is consistent with their goals. The
reason for simplicity is, so that it will be easy to
change the design when needed. Documents that
predict the future will become outdated one day.

• Collaboration – Agile methods involve customer
feedback on a regular and frequent basis. The customer
works closely with the developers, providing feedback
on their efforts.

• Small self-organizing teams – An Agile team is a
self-organizing team. Responsibilities are communicated
to the team as a whole, and the team members
determine the best way to fulfil them. Agile teams are
small (5-9 members), but occasionally, the teams can
have up to 120 to 250 members.

Cultural challenges are common to traditional software
development methods, but introducing Agile methods
will change the command and control method used in
companies. Developers would need more autonomy in
decision making and the power to implement Agile
principles (Fowler, 2004).

The issue of communication challenges will be resolved
when appropriate alternative media such as wiki, skype,
messaging, IRC (Internet Relay Chat), tele and video
conferencing are used. The benefits of short iteration
are numerous:

• It promotes transparency of work progress to all
partners

• All stakeholders: developers, project managers,
customers, can frequently get a good picture of how
the project is progressing.

• Distributed developers can get instant feedback
on their work through the aforementioned media.

• Seeing high quality work early and frequently
builds trust, confidence, and respect between partners.
This makes further collaboration easier.

• To the customer, Agile methods bring flexibility
and tolerate changes to meet requirements.

• It encourages collaboration and cooperation
during the early phases of the project rather than
documentation.

• Frequent iteration and testing also ensures that
all parties concerned understood the requirements,
thus dissolving the cultural barriers.

• Learning from mistakes is fast and early, thus
preventing problems from
accumulating.

• Frequent and open communication between
 participants builds trust and breaks cultural
 barriers.

• Proxy customers are represented by the user
company’s system Architect who represents the
company technically and also proffers business
requirements.

Some of the many challenges of TSDMs are related to
increased distance between people (Agerfalk,
Fitzgerald, Holmstrom, Lings, Lundell, et al, 2005):

• Geographical distance

• Temporal distance

• Socio-cultural distance

To reduce these distances, the current technique of
“near-shoring” is being practiced, where low-cost and
not so far locations are being explored, such as US-
Brazil and EU-Eastern Europe (Camel and Tjia, 2005).
Pair programming, a technique of having two
programmers working together on all production codes
using one computer, seemed to be impossible to
practice in TSDM. However, through time–shifting,
patterns and developers create an overlap and reduce
the temporal distance (Holmstrom, Fitzeralde, Agerfalk,
Conchuir, 2006). This way an Engineer in the US can
work six hours a day paired with another Engineer in,
say, Belgium. It is also believed that pair programming
helped to increase knowledge sharing (Holmstrom et al,
2006) and reduce socio-cultural distance. Hence, not
only did pair programming deliver the expected benefits,
but the benefits turned out to allay the TSDM related
fears of distributed development.
Distributed extreme programming (DXP) suggests that
eight of the XP practices, such as small releases,
metaphor, simple design, testing, refactoring, collective
ownership, 40-hour week, and coding standards are
independent of team locality and can be applied in
TSDMs (Kirscher, Jain, Corsaro, Levine, 2001).

Sriram and Matthew (2012) presented a review of
literature on applying ASDM methodologies in TSDMs,
and how the methodologies fit into TSDMs. Three main
ideas were identified:

• Performance of formal software development

• Governance related issues

• Software engineering process related issues

 AN EXPLORATIVE SURVEY OF FORMAL AND AGILE SOFTWARE DEVELOPMENT METHODS 73

The authors concluded that various types of Agile
methods were applied and tailored appropriately to
produce optimum performance in the context of TSDM.
However, empirical studies addressing TSDM-ASDM fit
were not found.

Sletholt, Hannay, Pfahl, Benestad, Langtangen (2011)
conducted literature review to investigate the effects of
using Agile practices in scientific software projects,
especially scrum and XP and compared with formal
software development methods. The authors found that
the projects that adopted Agile techniques had improved
testing processes compared to the TSDMs.
TSDM brought up many challenges relating to
distributed development, such as

• Interdependencies among work items that are
 distributed

• Difficulties of coordination

• Difficulties of dividing the work into modules that
 could be assigned to different locations.

• Conflicting implicit assumptions

• Communication challenges

Battin, Crocker, Kreidler, Subramanian (2001)
suggested incremental integration plan, which would be
based on clusters and shared incremental milestones, to
avoid the “big-bang” integration and last minute
problems. The authors explained that dividing the work
into modules for distribution and later integrate the
pieces, would bring unforeseen problems at the end.
Battin and colleagues’ strategy was successfully used at
Motorola and Alcatel companies, using one dedicated
team to each increment. They also based their progress
tracking on successfully integrated and tested customer
requirements (Ebert and De Neve, 2001).
The authors reported that a stable build proved to be
one of the key success factors, and that globally applied
continuous builds improved project life cycle.
Karlsson, Andersson, Leion (2000) confirm the use of
frequent builds, in fact, daily builds and feature-based
development as success in distributed development
projects. Incremental integration and frequent deliveries
are core practices in ASDMs (Larman and Basili, 2003).
Offshore software development was successfully
practiced using Agile methodologies, especially using
iterative development, and frequent deliveries (Fowler,
2004; Simons, 2002). These techniques, according to
the authors, increased project visibility and provided an
avenue for the customer and project managers to follow
project progress (Simons, 2002). Whereas 30 days
iteration length are suggested using scrum, Fowler
(2004) suggested the use of two-weekly iteration in XP,
to reduce communication overhead in distributed
development. Paasivaara and Lassenius (2004) opined
that Agile principles of frequent deliveries and
continuous iteration seem to suit traditional software
development methods. Both Fowler and Simons opined
that their successes with distributed development were
due to high responsiveness to change and fast delivery
of business values. These benefits, they concluded,
outweighed the challenges of distributed development.
Nisar and Hameed (2004) reported that they used XP in
offshore distribuyted software (ODSD) to achieve client
satisfaction. While Xiaohu, Bin, Zhijun, Maddineni (2004)
used XP in TSDM to reduce communication delay and
improve communication quality between the customers

and offshore development team. The authors concluded
that the XP principles they followed proved very
successful. Karlsson et al. (2000) and Farmer (2004)
reported that they found Agile principles useful, but hard
to implement in TSDMs. The authors found that Agile
principles, having used XP in offshore distribution
successfully, is possible with TSDM. Rather than
migrate to Agile methods, it is better to hybridize the two
methods, which would improve software development
process.
Schwaber (2004) reported how scrum method could be
scaled to large projects involving multiple scrum teams.
These scaling mechanisms enabled the usage of scrum
also in geographically distributed projects. Schwaber
further suggested that in these kinds of projects, high
bandwidth technologies for source code sharing,
synchronized builds, alternative communication methods
such as instant messaging, mailing lists, wiki, Internet
Relay Chat (IRC), skype and both tele and video
conferencing should be used.

3.0 DISCUSSIONS

It is the ability to respond to change that often
determines the success or failure of a software project
(Williams and Cockburn, 2003). This forms the main
difference between traditional software development
methods (heavyweight) and Agile software development
(lightweight) methodologies. Traditional software
development methods freeze product functionality and
disallow change. While Agile processes respond to
change at any stage of the project.

Facilitating change is more effective than attempting to
prevent it. It is more important than planning for disaster
(Boehm and Philip, 1988). Standish Group International
(SGI) carried out a research on software projects and
came up with, among others, three major reasons for a
project to be successful, such as:

• User involvement

• Executive management support

• A clear statement of requirements.

The idea of planning for everything upfront can work for
small projects, but for large and complex environments,
this technique would fall apart (Fowler, 2004).
Traditional software development methods
(Heavyweight) handled complex projects differently.
They planned ahead or upfront, and were bound to fail.
The solution lies in simplicity. Agile software
development methodologies promote simplicity,
because it is easier to effect changes. SGI further holds
an opinion that 45% of features found in an application
are never used. This is another reason why the design
and code should be as simple as possible (SGI, 1994).
Eisenhardt and Sull (2001) suggested that instead of
following complex processes, using simple rules to
communicate strategies is the best way to empower
people to seize fleeting opportunities in rapidly changing
markets. Documentation, which is very much valued in
traditional software development methodologies, is
unnecessary, according to Poppendieck (2005). She
explained that documents, diagrams, and models
produced as part of software development must be
minimized, because once a working system is delivered,
the user may care little about these deliverables. Agile

 74 OYONG, S. B. AND EKONG, V. E.

methods follow the same rules for their processes.
Another reason is that excess documentation creates a
waste of time in producing and reviewing the document.
Rather than have a hundred page detailed specification,
it is better to write a ten page set of rules and guidelines.
This is what Agile methodologies maintain,
documentation should be kept to the barest minimum.
Rather than taking months or years to show the
customer the final product,
use an iterative development where small but complete
portions of a system are designed and delivered
throughout the development cycle. This technique
allows the customer to have a better idea of how the
software works. This is what Agile methods adopted.
Software development practices, which keep
requirements flexible and as close to the system delivery
as possible, provide competitive advantages in a
changing environment. In a similar way, Agile methods
are designed to respond to change, not to predict it, and
also have the ability to make decisions as late as
possible. Agile methodologies empower team members.
They provide both tools and authority to team members,
other than managers, to take decisions. This is one of
the problems with traditional software development
methods, where all the decisions are made for
developers.
Instead, Agile methodologies give developers guidance
as well as freedom to take detailed design and
programing decisions. Poppendieck (2005) opined that it
is better to tell developers what needs to be done, but
not how to do it.
In respect to iterative development, traditional software
development methodologies keep customer feedback
and testing until the last stage of their project life cycle.
Agile believes otherwise, these should be embedded
into the system as a daily exercise. SGI (1994)
discovered that the delivery of software components
early and often, within short time frames, increases the
success rate.
However, Constantine (2001) opined that it is not every
problem that can be sliced and diced into the right
pieces for speedy incremental refinement. Therefore,
Agile processes do not work in all cases. High smith and
Cockburn (2005) opined that Agile methods are more
difficult for larger teams, because as the team size
grows, coordinating interfaces become a dominant
issue. Also, with developers numbering 20 and above,
the face-to-face communication breaks down and
becomes more difficult and complex (Constantine,
2001). In contrast, plan-driven methods scale better with
large projects.
Boehm (1988) contested that over focus on early and
continuous delivery of valuable phases of a product can
lead to a major rework, if the architecture doesn’t scale
up. He concluded that a plan driven process is most
needed for high assurance software. In the same vein,
Ambler (2005) opined thatit would be suspicious
applying Agile modeling in life critical systems. This is
because Agile methodologies do not support the TSDM
goals of predictability, repeatability, and optimization,
which are characteristics of reliable safety critical
software development. Fowler (2004) opined that Agile
methods are only good for business software.
Whereas Agile processes play down on documentation
as a waste of time and resources, Boehm (1988) is of
the opinion that it is only through documentation that

external experts can diagnose problems. Proposing no
documentation could lead to an increase in the risk
factor when considering maintenance and usage. Other
problems with using Agile methods include over
emphasis towards customer collaboration. The truth is
that, getting busy people involved in the development
process is irritating and an odd job indeed. More so, it
takes a dedicated customer to build quality software,
using Agile methods.
Another problem with Agile methods is project cost.
Agile projects have no fix prices, no fix schedule, and
projects are open-ended and evolve as requirements
change. Therefore, it becomes harder for managers and
customers alike to accept this technique as they would
rather know the total cost of the project, and overall
project schedule beforehand.
In the past few years, many companies have turned to
offshore development for faster, better, and cheaper
development teams. Other benefits include increased
productivity, competitive advantage, and internal
customer satisfaction (Moore and Barnett, 2004).
However, offshore development comes with no physical
proximity, and that plan-driven approach is usually
favored where business analysis, detailed requirement
and design are done at the front office (on-shore) and
sent to the back office (off-shore) for construction. These
arrangements come with challenges for Agile
methodologies.

Time zone differences and separation by thousands of
miles reduce the communication between on-shore and
off-shore teams. Anyway, Fowler (2005) proposed the
following actions to be used for a successful
implementation of Agile methodologies in offshore
software development:

• Use distributed continuous integration

• Have each site send ambassadors to the other
 site.

• Use contact visits to build trust.

• Don’t underestimate the cultural change. In
Asian countries, command and control model is used.
This discourages some countries adopting Agile
methods offshore.

• Use test scripts to help understand the
requirements – Acceptance tests help to communicate
and clarify the requirements between offshore and
onshore team members.

• Use regular builds to get feedback on
functionality – according to Fowler (2005), the quicker
the customer can look at a partial function, the
quicker they can spot any miscommunications.

Having skilled and experienced people in a team is a
key factor for Agile methodologies. With domain experts
in the team, developers have rapid feedback on the
implications to the users of their design choices.
With regards to applying ASDMs in large-scale and
mission critical projects, it is not clear if Agile methods
are used on large-scale projects, such that they can
provide end users with the desired quality in timely
manner (Marrington, Hogan, and Thomas, 2005).
However, some researchers reported otherwise. They
contend that large-scale and complex projects have
benefited from suitably tailored Agile development
methods (Bowers, May, Melander, Baarman, Ayood,
2002; Cao, Mohan, Xu, Ramesh, 2004; Lindvall,

 AN EXPLORATIVE SURVEY OF FORMAL AND AGILE SOFTWARE DEVELOPMENT METHODS 75

Muthing, Dagnino, Wallin, Stupperich, et al., 2004).
Bowers et al. (2002) examined if XP could be used in
large-scale and mission critical projects and saw that it
could be done, with some modifications. Lippert,
Becker-Pachau, Breithing, Koch, Kornstadt, et al.(2003)
had a similar experience with XP and confirmed the
possibility of applying Agile software development
methods on large-scale and mission-critical projects.

4.0 THE AMBIDEXTROUS FRAMEWORK

According to Nerur, Mahapatra, Mangalaraji (2005),
ASDM and TSDM have conflicting organizational
cultures, management styles, organizational forms, and
reward systems. Ambidexterity is a technique that will
allow the marriage of the two methods drawing from
their strengths and reducing their weaknesses.
Ambidexterity is an effective and viable solution to the
seemingly extreme stands of “stability” for TSDM, and
“agility” for ASDM (Katila and Ahuja, 2002; He and
Wong, 2004). Figure 1 shows the ambidextrous
framework.

Figure1: Ambidextrous Framework (Source: Nerur et al., 2005),

The ambidextrous framework has sub units that are
highly coupled within the subunits and loosely coupled
across sub units, but are tightly integrated at the senior
executive level (O’Reilly and Tushman, 2004). The tasks
are highly consistent within each sub unit and highly
different from other sub units (Benner and Tushman,
2003).

5.0 CONCLUSION

This research work surveyed the possible means of
hybridizing STDM and ASDM and came up with an
ambidextrous framework, which could be used to bridge
the two. Both methods have their strengths and
weaknesses. Traditional software development methods
have the following advantages:

• Stability

• Planning upfront

• Detailed documentation

• Management control of decision making in the
 project

• Fixed cost estimates

• Fixed schedules

• Codified process

• Encourage reuse of pre-process modules

• Requirements known in advance, and fixed.

 However, STDM has drawbacks, which
 include

• Planning upfront for large projects leading to
 failures

• Delayed customer feedback and modules
 testing to the last phase of the project.

• Not flexible to requirements changes

• Not all documented requirements are
 implemented

• Prone to litigations due to breach of contract
 terms, by not meeting schedule dates, among
 others
 Agile software development methods
(ASDM) prove to be viable alternatives to STDM with
 the following advantages:

• Simplicity

• Hitting the market on target time.

• Customer satisfaction guaranteed

• People oriented

• Iterative – delivery of small and complete pieces
 of software and on time.

• Face-to-face communication

• Close cooperation between developers and the
 clients

• Freedom to developers

• Regular adaptation to changes in requirements.

 ASDM also have her fair share of the
software development problems (short comings),
which include:

• ASDMs are difficult to implement

Stability?

Yes

The final product

Tight Integrated Information

System Management

Agile software development

methods sub unit.

Traditional software development

method sub unit.

No

 76 OYONG, S. B. AND EKONG, V. E.

• Limited documentation

• The customer must not only be knowledgeable,
 but interested for ASDM to work.

• Only skilled developers can implement ASDM.

• Unrealistic expectations

• Constant need of attention

• Testing is not cheap

• Not much empirical evidence to support ASDM’s
 claims

• No fix project cost and schedule

These differences notwithstanding, ambidextrous
framework proposed would cement their symbiotic
relationships for better software development.

REFERENCES

Agerfalk, P. J., Fitzgerald, B., Holmstrom, H., Lings, B.,
 Lundell, B., Conchuir, E. 2005. A framework for
 considering opportunities and threats in
 Distributed software Development. In
 proceedings of the International workshop on
 Distributed software Development DISD 2005,
 Paris, Austrian Computer Society, pp. 47-61.

Ambler, S. 2005, “When Does (not) Agile Modeling
 Make Sense?”
 http://www.Agilemodeling.com/essays/whendoe
 samwork.htm#wontwork

Awad, M. A. 2005. A comparison between Agile and
 traditional software development
 methodologies. Unpublished doctoral
 dissertation. The University of Western
 Australia. Australia.

Battin, R. D., Crocker, R., Kreidler, J., Subramanian, K.
 2001. “Leveraging resources in global software
 development”, IEEE Software,18(2): 70 – 77.

Bech, K., Beedle, M., Bennekum, A., Cockburn, A.S.,
 Cunningham, W., Fowler, M, et al. 2001.
 Manifesto for Agile software development.
 http://www.Agilemanifesto.org/

Benner, M.J. and Tushman, M. L. 2003 Exploitation,
 Exploration, and process management: The
 productivity dilemma revisited. Ademy of
 Management Review 28(2): 238-256

Boehm, B. 1988 "A Spiral Model for Software
 Development and Enhancement," Computer,
 vol. 21, no. 5, pp. 61-72.

Boehm, B. 2002. Get ready for Agile methods with care.
 Computer.35 (1): 64- 69.

Boehm, B and Philip, P. 1998.“Understanding and
 controlling software cost”, IEEE Transactions on
 software Engineering,14 (10).

Boehm, B. and Turner, R. 2003.Using risk to balance
 Agile and plan-driven methods. Computer,
 36(6): 57-66.

Boehm, B. and Turner, R. 2005, “Management
 challenges to implement Agile processes in
 traditional organizations”, IEEE Software,
 22(25):30-39.

Bowers, J., May, J., Melander, E., Baarman, M., Ayoob,
 A. 2002. Tailoring XP for large systems
 mission-critical software development.
 Proceedings of the second XP Universe and
 First Agile Universe Conference on Extreme
 Programming and Agile Methods, pp. 100-111.

Brooks, F.P. 1975. The Mythical Man-Month: Essay on
 Software Engineering. Addison Wesley.

Cao, L., Mohan, K., Xu, P., Ramesh, B. 2004. How
 extreme does extreme programming have to
 be? Adapting XP practices to large-scale
 projects. Proceedings of the 37

th
 Hawaii

 International Conference on system sciences,
 pp. 1-10.

Carmel, E. and Tjia, P. 2005, Offshoring Information
 Technology: Sourcing and outsourcing to a
 Global Workforce: Cambridge University Press,
 Cambridge, NY.

Chow, T. and Cao, D-B. 2007. A survey study of critical
 success factors in Agile software projects.
 Journal of systems and software, 81(2008): 961-
 971.

Cockburn, A. 2006. “Agile software development: A
 cooperative Game”, 2nd Edition, Addison-
 Wesley Professional, Boston.

Cohn, M. and Ford, D. 2003. Introducing an Agile
 process to an organization. IEEE
 Computer, 36(6):74-78.

Constantine, L. 2001, “Methodological Agility”, IEEE
 Software Development, pp. 67-69

Ebert, C. and De Neve, P. 2001, Surviving Global
 Software Development. IEEE Software, pp. 62-
 69.

Eisenhardt, H and Sull, D. 2001 “Strategy as Simple
 Rules”, Harvard Business Review, 79: 107-116.

Farmer, M. 2004. Decision space Infrastructure: Agile
 development in a large, distributed Team.
 Proceedings of the Agile Development
 Conference.

Fowler, M. 2004. Using Agile Software Process with
 Offshore Development.
 http://martinfowler.com/articles/agileOffshore.ht
 ml 7.1.

Fowler, M. 2005. The new methodology, Available
 online at
 :http://matinfowler.com/articles/newmethodology
 .html

 AN EXPLORATIVE SURVEY OF FORMAL AND AGILE SOFTWARE DEVELOPMENT METHODS 77

Fruhling, A. and De Vreede, G. J 2006. Field
 experiences with extreme programming:
 Developing an emergency response system.
 Journal of Management Information Systems,
 22(4): 39-64.

Goldman, A., Kon, F., Silva, P.J.S., Yoder, J. W. 2004,
 Being extreme in the classroom: Experiences
 leaching XP. Journal of the Brazilian Computer
 Society, 10, 5-21.

He, Z. and Wong, P. 2004. Exploration vs exploitation:
 An empirical test of the ambidexterity
 hypothesis. Organization Science, 15(4): 481-
 494.

Hickey, A.M. and Davis, A.M. 2004. A unified model of
 requirements elicitation, Journal of
 Management Information Systems, 20(4): 65-
 84.

Highsmith, J. 2002, Agile Software Development
 Ecosystem. Addison Wesley.

Highsmith, J. and Cockburn, A. 2001.Agile software
 development: The Business innovation.
 IEEE Computer, 34(9):120-122.

Highsmith, J. and Cockburn, A. 2004, “Agile Software
 Development: The People Factor”, IEEE
 Computer, Available online at:
 http://www.jimhighsmith.com/articles/IEEEArti
 cle_1Final.pdf

Highsmith, J. and Cockburn, A. 2005, “Agile Software
 Development: The Business of Innovation”,
 IEEE Computer, Available online at:
 http://www.jimhighsmith.com/articles/IEEEArticle
 _2Final.pdf

Highsmith, J. A. 2000, Adaptive Software Development:
 A collaborative Approach to Managing Complex
 Systems. New York: Dorset House Publishing.

Holstrom, H., Fitzgerald, B., Agerfalk, P. J., Conchuir, E.
 O. 2006 Agile Practices Reduce Distance in
 Global Software Development. Information
 System Management, 23(3): 7-18, Available
 online at:
 http:/www.therationaledge.com/content/jan-
 01/f_rup_pk.html

Karlsson, E., Andersson, L., Leion, P. 2000, Daily Build
 and Feature Development in large Distributed
 Projects.Proceedings of the International
 Conference on Software Engineering, Limeric,
 Ireland, pp. 649-658

Katila, R. and Ahuja, G. 2002. Something old, something
 new: A longitudinal study of search behavior
 and new product introduction. Academy of
 Management Journal 45(6): 1183-1194.

Kirscher, M., Jain, P., Corsaro, A., Levine, D. 2001,
 Distributed Extreme Programming. In: Proc.
 International Conference on eXtreme

 Programming and Flexible Processes in
 Software Engineering.

Kruchten, P. 2004. The rational Unified Process: An
 Introduction (3

rd
ed.). Reading, MA: Addison-

 Wesley, Longman.

Larman, C. 2004. Agile and Iterative Development: A
 Manager’s Guide. Addison Wesley

Larman, C. and Basili, V. 2003, Iterative and
 Incremental Development: A Brief History. IEEE
 Computer, pp. 47-56.

Leffingwell, D. 2007. Scaling software agility: Best
 practices for large enterprises. Upper
 Saddle River. NJ: Addison-Wesley.

Lindvall, M., Muthing, D., Dagnino, A., Wallin, C.,
 Stupperich, M., Kiefer, E, et al. 2004. Agile
 software development in large organizations.
 Computer, 37(12): 26-34.

Lippert, M., Becker-Pechau, P., Breithing, H., Koch, J.,
 Kornstadt, A., Roock, S., et al. 2003. Developing
 complex projects using XP with extensions.
 Computer, 36(6): 67-73.

Marrington, A., Hogan, J.M., Thomas, R. 2005. Quality
 assurance in a student- based Agile software
 engineering process. Proceedings of the 2005
 Australian Software engineering conference,pp.
 324-331.

Mockus, A. and Herbsleb, J. 2001, Challenges of Global
 Software Development. Proceedings of the
 seventh International Software Metrics
 Symposium,(METRICS 2001, IEEE) pp.182-
 184.

Moore, S. and Barnett, L. 2004, “Offshore outsourcing
 and Agile Development”, Forester Best
 Practices.

Nerur, S., Mahapatra, R., Mangalaraji, G. 2005.
 Challenges of migrating to Agile methodologies
 communications of the ACM, 48(5): 73-78.

Nisar, M and Hameed, T. 2004, Agile Methods Handling
 Offshore Software Development Issues.
 Proceedings of INMIC 2004, 8

th
 International

 Multi-topic Conference, pp.417- 422.

O’Reilly, C.A III and Tushman, M.L. 2004.The
 ambidextrous organization. Harvard Business
 Review 83(4):74-81.

Paasivaara, M and Lassenius, C. 2004, Synchronizing
 Global Software Development by using
 Incremental Development and frequent
 Deliveries. Proceedings of the ICSE
 International workshop on Global Software
 Development, Edinburg.

Poppendieck, M. 2005, “Lean Programming”.
 http://www.poppendieck.com/lean.htm

 78 OYONG, S. B. AND EKONG, V. E.

 Royce, W.W. 1970. Managing the development
 of large software systems, In: Proceedings of
 WESCON, pp. 1-9.

Satzinger, J.W., Jackson, R.B, Burd, S.D. 2005. Object
 oriented Analysis and design with Unified
 process. Boston: Thomson Course-Technology.

Schach, S.R. 2004. An Introduction to Object-Oriented
 systems analysis and design with UML and the
 Unified process, Boston: McGraw-Hill.

Schwaber, K. and Beedle, M. 2002.Agile software
 development with scrum, Upper Saddle
 River, NJ: Prentice Hall.

Simons, M. 2002.“Internationally Agile”, InformIT.

Sletholt, M. T., Hannay, J., Pfahl, D., Benestad, H. C.,
 Langtangen, H. P. 2011, A literature Review of
 Agile Practices and their Effects in Scientific
 Software Development. Proceedings of the 4th
 International Workshop on Software
 Engineering for Computational Science and
 Engineering, Wuhan, 9-11 December, 2011, pp.
 1-9.

Sriram, R. and Matthew, S. K. 2012, Global Software
 Development using AgileMethodologies: A
 Review of Literature. 2012 IEEE International
 Conference on Management of Innovation and
 Technology, Bali, 11-13 June, 2012, pp. 389-
 393.

Standish Group International 1994. “The CHAOS
 Report, http://www.standishgroup.com/sample
 research/chaos_1994_1.php

Williams, L. and Cockburn, A. 2003, “Agile Software
 Development: It’s about Feedback and Change,
 IEEE Computer, pp. 39-43.

Willson, C. D. 2009. A brief Introduction to SCRUM: AN
 Agile Methodology. Martincor Inc. Information
 Technology Management Consulting.

Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, S. 2004
 Extreme Programming in Global Software
 Development. Proceedings of the Canadian
 Conference on Electrical and Computer
 Engineering,4:1845-1848.

 AN EXPLORATIVE SURVEY OF FORMAL AND AGILE SOFTWARE DEVELOPMENT METHODS 79

