INVESTIGATING THE MINERAL COMPOSITION OF PROCESSED CHEESE, SOY AND NUNU MILKS CONSUMED IN ABUJA AND KEFFI METROPOLISES OF NIGERIA

OKPARA M. U., MADU P. C., SHUAIBU B.S. UBANA M.A. AND ISAH J.

(Received 18 May 2021; Revision Accepted 4 June 2021)

ABSTRACT

Milk and its products are needed for proper body building. Processed cheese, *nunu* and soy milk consumed within Abuja and Keffi metropolises were analyzed for their mineral contents. X_1, Y_1, Z_1 represents soy milk, *nunu* and cheese from Abuja metropolis while X_2, Y_2, Z_2 represents sample from Keffi metropolis respectively. Calcium $(265.53\pm0.25 \text{ mg/mL})$, iron $(1.19\pm0.92 \text{ mg/mL})$, potassium $(162.77\pm0.02 \text{ mg/mL})$ were found to be higher in cheese milk (Z_1) from Abuja than that $(225.82\pm0.13 \text{ mg/mL})$, $1.05\pm0.60 \text{ mg/mL}$ and $130.41\pm0.04 \text{ mg/mL}$ found in Keffi (Z_2) examined respectively, though the amount of sodium present $(151.0\pm0.08 \text{ mg/mL})$ in cheese (Z_2) from Keffi is slightly higher than that $(150.08\pm0.01 \text{ mg/mL})$ from Abuja (Z_1). Also, Soya milk from Abuja (X_1) had highest amount of zinc $(0.76\pm0.00 \text{ mg/mL})$ while that of Keffi (X_2) was $0.65\pm0.3 \text{ mg/mL}$, for magnesium and copper, higher values $18.40\pm010 \text{ mg/mL}$ and $0.25\pm0.02 \text{ mg/mL}$ were recorded for soy milk(X_2) from Keffi while soy milk from Abuja(X_1) had $17.97\pm0.20 \text{ mg/mL}$ and $0.16\pm0.01 \text{ mg/mL}$ respectively. Chromium was dictated in both cheese samples but not dictated in soya and nunu milks from both metropolises. It is seen from the investigation that cheese had more minerals followed by soya milk. *Nunu* milk sample had the least quantity of minerals; also all the samples analyzed have minerals present in them. Therefore, they are needed for the proper functioning of the body system.

KEYWORDS: Analysis, Concentration, Milk, Mineral, Metropolis, Flame Atomic Absorption Spectroscopy.

INTRODUCTION

Milk products nowadays are considered as good sources of nutrients for human health throughout the world (Steijns, 2001). It is the raw material used in processing and manufacture of other milk products for example butter, kefir, cheese, margarine, soymilk, Wara, whey, skim milk, sour cream, yoghurt, buttermilk, acidophilus milk, ice-cream, *kunu*, fermented cow's milk (*nunu*), mayonnaise and many others (Singh et al., 2014). These milk products may be consumed in original form or they may be mixed with fruits, grains, and nuts to yield delicious beverages, snacks, desserts, breakfast foods, or a light lunch. Obviously, the nutritional value of any food product depends on its composition. Milk products constitute an important group of foods. They include vitamins, minerals, fats, water, enzymes, carbohydrates and proteins, they help in body growth, energy supply, maintenance and repair of body tissues and appetite satisfaction, thus it is used for drinking purpose. They are important in uptake of vitamins (Fox & Cameron, 1989).

Dairy products are considered an excellent source of calcium, phosphorus and magnesium, which are highly bioavailable, these minerals in optimum ratio are present in milk and its products and are required for optimum growth and maintenance of bones (McKinley, 2005; Aneja et al., 2002). Milk is also considered an excellent source of protein, riboflavin (vitamin B2), thiamin (vitamin B1), vitamin B12, folate, niacin and zinc (McKinley, 2005). The Presence of phosphorous in the milk is essential for controlling acid base balance, energy metabolism and also organizes the cell membrane structure. Phosphorous collaborate with milk calcium and works to sustain the hardness of bones and teeth.

The main minerals present in milk are: Sodium, Magnesium, Phosphorus, Chlorine, Potassium, Calcium, copper and Zinc which are good for man’s growth and development. Milk like *nunu* when preserved well can be nourishing and refreshing and can be purchased at a low cost. (Nebedum & Obiakor, 2007). They are also required for body building and control of metabolic processes e.g. nerve impulse transmission.

Okpara M. U., Department of Chemistry, Nasarawa State University, Keffi, Nigeria

Madu P. C., Department of Chemistry, Nasarawa State University, Keffi, Nigeria

Shuaibu B. S., Department of Chemistry, Nasarawa State University, Keffi, Nigeria

Ubana M. A., Department of Biochemistry and Molecular Biology, Nasarawa State University, Keffi, Nigeria

ISAH J., Department of Chemistry, Nasarawa State University, Keffi, Nigeria
RESULTS AND DISCUSSION

Mineral elements are the most important component of foods which play many roles in chemical and biochemical body processes. Table 1 shows the mineral composition of the milk samples, calcium composition for the milk samples X₁, X₂ (soy milk), Y₁, Y₂, (nunu) Z₁, and Z₂ (cheese) were (40.22±0.04, 43.85±0.01, 106.0±0.00, 156.0±0.06, 265.5±0.00 and 225.82 mg/mL for Abuja and Keffi respectively. Cheese from Abuja (Z₁) has the highest value (265.5±0.00 mg/mL). This value for cheese was lower than the value as reported by Nazim et al., (2012) as (1284.30± 4.68 mg/mL). Sample Z₁ was higher than sample Z₂ collected from Keffi. The calcium content of both soy milks in the result of this study is in agreement with the reported work (44.5± 36 mg/mL) of (Nwoke Faith et al., 2015 & Udeozor, 2012). The calcium content of sample nunu was lower than that of sample cheese. The reason for this difference could be due to added coagulants in cheese production. Kato et al., (2002) have showed in their experiments with rats that milk calcium taken with cheese (sample Z) was better absorbed than calcium taken without cheese. The calcium content of sample Y₂ was higher than the corresponding sample Y₁. This high calcium content in sample Y may be due to forage consumed by cows. The result of this study for sample X calcium content was low but in agreement with the reported work (40 to 44 mg/mL) of Udeozor (2015) for unfortified soya milk. This low calcium content in sample X may be the reason why manufacturers fortify soymilk with calcium. Furthermore, animal milk products have high calcium bioavailability than other sources like plants milk, this could be partly because the contents of animal products was highly phosphorylated fragments of caseins, named caseinophosphophtides (CPPs)(Peres et al., 1999). These CPPs have the ability to form CPPs-metallation complexes, which would potentially increase calcium bioavailability (Dupas et al., 2009). The health aspect of cheese focuses on the role played by this specific mineral but also the roles played by protein and lipid cannot be ignored. Calcium is required for bone formation in both infants and adults to prevent osteoporosis, for cell membrane permeability, for blood clotting, muscle response and enzyme activation (Cashman, 2002).

The result for Magnesium content of the milk products for this study was 17.97±0.20, 18.40±0.10 mg/mL for sample X₁ and X₂, 9.12±1.76, 10.20±1.25 mg/mL for sample Y₁ and Y₂ and 4.05± 1.24, 3.05±0.90 mg/mL for samples Z₁ and Z₂ (Table 1). Sample X₂ gave the highest value and this value 18.40± 0.20 mg/mL was within the range of 10 to 19 mg as given by the USSDA, (2005) from Nutrient Database for Standard Reference. However, the value of magnesium obtained for samples Z in this study was lower than the reported value of 9.50 mg/mL by Holland et al., (1995). The reason could be due to loss of this mineral during processing methods which lowers the nutrient germ and bran of the cheese. The iron content for the milk were 0.5± 0.30, 0.58±0.25 mg/mL for samples X₁ and X₂, 0.07±0.27, 0.13±0.12 mg/mL for sample Y₁ and Y₂ and 1.19±0.92, 1.05 mg/mL for samples Z₁ and Z₂ (Table 1). Sample Z₁...
has the highest Iron value; this was reflected in the high ash content of this milk sample. The value for sample Y (0.07±0.27 mg/mL) was the same as that obtained by Amistu et al., (2015). Sample X provides more iron (0.5±0.30 mg/mL) than sample Y. The result of sample X in this study is close to the value reported by USDA, (2005) which is 0.6mg. Iron is responsible for the transport of oxygen throughout the body; it helps in red blood cell formation. Enough consumption of iron will help prevent impaired intellectual development in children, lead poisoning in children and prevent anemia in both adults and children (Cousin, 2006). It is also an essential component of hundreds of protein and enzymes (Rolfes et al., 2014). Soy milk consumption will help the body to acquire more iron in the body than other products unless they are fortified with iron.

Zinc and Copper which are trace elements are also present in the samples but in minute levels. Zinc values for the milk sample were 0.76±0.00, 0.65±0.03 mg/mL for soya milk (X) and X from Abuja and Keffi respectively, (0.08±0.01, 0.29±0.02mg/mL for nunu (Y) samples and 0.06±0.00, 0.048±0.00 mg/mL for cheese (Z) samples from Abuja and Keffi respectively. The values for cheese (Z) and nunu (Y) were lower than the reported value of 0.61±0.35mg/mL by Nazim et al., (2012) and 0.29±0.00mg/mL of Amistu et al., (2018) respectively. The observed differences could be due to difference in the breed of cow used and the milking condition of the cows from the different places. Sample X, (0.76±0.00mg/mL) was higher than the value reported by USDA nutrient database for standard reference which is 0.23mg. The reason could be due to variety of soya beans used, growing conditions and soil profile of the area in which the soya beans was grown. Zinc value for sample X from both Abuja and Keffi is higher in vegetable protein than animal protein. Zinc functions as an antioxidant, aids in maintaining healthy bone structure (Saltman & Strause, 1993), maintains healthy immune functions, healthy vision and supports normal fetal growth (Simmer et al., 1991).

The level of copper in the milk samples are presented in Table 1. Soymilk gave 0.16±0.01mg/mL, 0.25±0.02mg/mL of copper for sample X and X from Abuja and Keffi respectively. Samples Y1 and Y2 gave 0.08±0.00, 0.12±0.06 and samples Z1 and Z2 gave values 0.04±0.02, 0.03±0.04 respectively. Copper is essential for enzymes that help to synthesize collagen. It is also a critical component of the enzyme superoxide dismutase (SOD) which acts as a catalyst in the formation of hemoglobin (Harris, 2000). The copper value for sample Z and Y from Abuja in this research are 0.04±0.02 mg/mL and 0.08±0.00 mg/mL respectively, it was found to be lower than the value reported by Nazim et al., (2012) for cow milk cheese 0.25±0.03 mg/mL. Sample X2 from Keffi 0.25±0.02 mg/mL was higher than the other samples and this could be due to good vegetation and soil type in the soya beans cultivation area.

Potassium is one of the intracellular cations and the levels of potassium in this study as presented in Table 1 were 80.50±0.02, 80.95±0.04 mg/mL for sample X1 and X2 respectively. This value did not show any difference in mineral content of soymilk from Abuja and Keffi. The USDA nutrient database for standard reference (2005) reported value of 141.0mg for soya milk (X samples) and 150.0 mg for cow milk (Y samples) but the result of this study was lower than their report. The result for sample Z1 from Abuja (162.77±0.02 mg/mL) was higher than the findings of Wong & Alford (1978), Holland et al., 1995) who reported 134.1±0.00 mg/mL and 89.0±0.00 mg/mL respectively, this value corresponds to the report of this study on sample Z2 from Keffi. This difference could be due to technology of production. Potassium found in most of the milk products and food we consume; so its deficiency (hypokalemia) is rare and it is very essential for life. The kidney filters excess potassium in the blood so that these concentrations remain stable. Kidney patients who have high potassium levels should check with their nephrologist before eating cheese because if the kidney cannot filter potassium they cannot filter phosphorous according to National institute of Diabetes, digestive and kidney disease. The concentration of Sodium in the samples as seen on the Table are 13.12±0.03 mg/mL for samples soy milk from both metropolises of the study areas, 46.21±0.07 and 46.80±0.26 mg/mL for samples Y1 and Y2, 150.08±0.01, 151.0±0.08 mg/mL for Z1 and Z2 respectively. There was no difference in sodium content of milk samples from both metropolises. The result of sample Y1 (46.21±0.07 mg/mL) is higher than the reported work of Wong et al., (1978) but within the reported findings of Dadasah & Gupta (2015). The reason could be difference in breed and stage of lactation. Sodium in soy milk (X) was lower than that seen in nunu (Y) and cheese (Z). The high sodium content of sample Z (150.08±0.01 mg/mL and 151.0±0.0 mg/mL) could be due to salt used in their preparation. Sodium has an adverse effect to hypertensive patients and in raising of blood pressure. A high salt intake increases the mass of left ventricles and thickens the arteries. It increases renal function deterioration and stroke. Hypertensive patients should take caution in taking cheese with high sodium content National Institute of Medicine, (2001).

Chromium metal was not found in soy and nunu milks but a little quantity (0.10±0.04, 0.16±0.03 mg/mL was found in samples Z1 and Z2 respectively and this could be from the processing equipment’s used in its making.
ilk products are
-
,
,
,
Kawasaki, Y.,
-130
Cashman, K.
Aneja, R.
REFERENCES
with animal cheese in terms of their nutritional value
developed to soy yoghurt and soy cheese and compare
their microbial quality. The soya milk could also be
Further inves
should be encouraged
Consumption of vegetable source protein (soya milk)
during large production; as well as iron in cow’s milk.
will ensure that soya milk are fortified with calcium
Government agencies that monitor quality milk products
RECOMMENDAT
ions affects their compositions
locations in which these milk samples were obtained
their body to function. It was also concluded that
aware of the components of their diet, which must be
high magnesium but calcium content is quite deficient
soil due to the high population of people. Sample X has
activities of men
samples. This could be attributed to the effects of the
cheese samples Z
the mineral contents calcium, iron and potassium for
comparable; all the products had mineral nutrients but
Values presented are mean ± standard deviation of triplicates.

CONCLUSION
The nutritional values for the milk products are
comparable; all the products had mineral nutrients but
the mineral contents calcium, iron and potassium for
cheese samples Z, and Z are higher than the other milk
samples. This could be attributed to the effects of the
activities of men in Abuja Metropolis which affects the
soil due to the high population of people. Sample X has
high magnesium but calcium content is quite deficient
while samples Y contain less Iron value. These findings
will help consumers in their choice of products and be
aware of the components of their diet, which must be
choosen judiciously to provide all the nutrients needed by
their body to function. It was also concluded that
locations in which these milk samples were obtained
affects their compositions

RECOMMENDATIONS
Government agencies that monitor quality milk products
will ensure that soya milk are fortified with calcium
during large production; as well as iron in cow’s milk.
Consumption of vegetable source protein (soya milk)
should be encouraged
Further investigation should be carried out to examine
their microbial quality. The soya milk could also be
developed to soy yoghurt and soy cheese and compare
with animal cheese in terms of their nutritional value

REFERENCES
Aneja, R. P., Mathur, B. N., Chandan, R. C. and
Products. Dairy India Publication, Delhi, India,
Belewu, M. A and Belewu, K. Y., 2009. Comparative
physio-evaluation of tiger-nut, soya bean and
coconut milk sources. International Journal of
Agriculture and Biosciences 9:785-787
Cashman, K. D., 2002a. Macroelements, Nutritional
significance. In: Roginski H. Fuquay J.W, Fox,

Cousins, R. J., 2006. Present knowledge in nutrition 9th
Dadasheb, N. and Shelley, G., 2015. Detection
minerals in cow milk sample ISSN vol IV 2278-
2540.
Dupas, C., Adt, I., Cottaz, A., Boutrou, R., Molle, D.,
procedure for semi-quantitative evaluation of
casein phosphopeptides in cheese.Dairy
Science and Technology 89(6):519-652.
Fox B. A. and Cameron A. G., 1989. Food Science,
Nutrition and Health. Medicine and Health
Science Books. www.semanticscholar.org
Fox, P. F., McSweeny, P.L. H., Cogan, T. M and
and microbiology. Elsevier Applied Science
Harris, E. D., 2000. Cellular copper transport and
metabolism. The Annual Review of
Nutrition 20:291-310
Holland, B., Welch, A. A., Unwin, I. D., Buss, D. N.,
composition of foods, Ministry of Agriculture,
Fisheries and food.
Kato, K., Takada, Y., Matsuyama, H., Kawasaki, Y.,
Aoe, S., Yano, H. and Toba, Y., 2002. Milk
calcium taken with cheese increases bone
mineral density and bone strength in growing
rats. Bioscience, Biotechnology and
Mckinley, M. C., 2005. The nutrition and health benefits
of yoghurt. International Journal of Dairy
technol, 58: 01-12.
National Institute of Medicine, 2001. Dietary reference
intake for Vitamin A, Vitamin K, iron,
 phosphorus, potassium, zinc, sodium. National
Academy Press, 441-502.

