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ABSTRACT 
 
 The t-J model written in terms of Hubbard operators is studied with a view to contributing to the search for the 
mechanism of high temperature superconductivity in the cuprates. The method of irreducible Green function is used to 
obtain the spectrum of quasiparticles excitation and d-wave pairing gap function. 
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INTRODUCTION 
 The epoch making discovery of the high 
temperature superconductivity (La2-xSrxCuo4) or 214 by 
Bednorz and Muller (1986) soon led to a frenzy of 
activities towards finding a correct theory to explain the 
phenomenon. The Bardeen- cooper- Schrieffer (BCS) 
theory which describes the phonon- mediated low 
temperature (Tc < 30 k) superconductivity in lead and 
tin, for example, is inadequate for the Hi-Tc 
superconductors. The 214 system is a hole 
superconductor with the tetragonal La2Cuo4 as a parent 
compound and unit cell dimensions a=b=3.8A, c=13.2A. 
The maximum value of the critical temperature of the 
214 compound is about 40K.  

 The non- phononic mechanisms so far proposed 
to explain the Hi-Tc superconductivity are excitonic 
(Freeman et al., 1989), plasmonic (Kresin,1987), 
polaronic and bipolaronic (Martinez et al., (1991)), 
fractional statistics (Laughlin, 1989) 
 None of the above mechanisms is based on the 
nature of the cuprates which is magnetic. Perhaps that 
in the reason why their explanations of the 
superconductivity have had limited scope . 
 A proper theory and mechanism of superconductivity in 
the ceramic cuprates should take account of magnetism 
inherent in the compounds. For the (214) compound 
experiment have revealed strong antiferromagnetic (AF) 
correlation in the CuO plane (Masatoshi et al., 1998) 

 
We start with the Hubbard Hamiltonian (Hubbard, 1963)         
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where  ciσ, c
+

iσ  are the Fermi destruction and creation 

operators at site i and spin σ, niσ=c
+

iσciσ is  the operator 

of the number of electrons in the state iσ, tij is the matrix 
element of the electron hopping from site to site, and U 
is the coulomb repulsion energy. The last term makes 
allowance for the Pauli principle, so that only two 
electrons with opposite spins can stay at a site of the 
lattice. Strong correlation between electrons will appear 
in a narrow band (t<u) making it expedient for U to 
appear in the zeroth approximation, while t is taken as a 
small perturbation. The arrows in the second term (1.1) 

indicate the up and down directions of the electron 
spins. 
 The simple looking Hamiltonian (1.1) is very 
difficult to solve. The exact solution is available only in 
the one-dimensional case. It is reasonable to seek 
equivalent models in the strong coupling limit U>>t. In 
this case the solution yields the so called t-J model. The 
essential constraint in the large U-limit is to remove the 
double occupancy. This can be achieved by using the 
(Schrieffer et al., (1966)) canonical transformation 
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In that case the Hamiltonian (1.1) may be written in the form 
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where 
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The factor Iij= 1 for nearest neighbour and zero otherwise. We multiply (4) by ni-σ + hi-σ =1 on the left and by nj-σ+ hj-σ on 
the right, where hi-σ is the hole and ni-σ the electron occupation numbers. 
     The followings are obtained 
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Here To describes hopping between two doubly occupied sites (i,j)(first term) and two singly occupied sites (second 
term). T1 increases the number of doubly occupied sites by 1, T-1 decreases the number of doubly occupied sites by 1 
If we form the commutator [V, T1] = -uT1 and [V, T -1] = -u T-1; then we can choose 
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     where the spin of the lattice site is defined by  
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   and σ is the Pauli  matrices of the electron spin. 
                                                                               
Usually eqn. (1.10) is written as  
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where the coupling constant                                             
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Equation (1.12) represents the t-J model. 
It should be noted that at half –filling, each site is occupied by one hole which makes the first term 
in (1.12) to vanish ,thus recovering the Heisenberg  Hamiltonian  for the antiferromagnetic ( AF) lattice. 
 
THE HUBBARD OPERATORS 
 
The Hubbard or X-operator is defined as (Hubbard,1964) 
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The operator Xi

pq
 changes the atomic state or configuration from q to p on the site i 

without affecting  other sites.The states are listed as  
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The electron creation and annihilation operators are related to the X-operators by the expressions 
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    Where σ = ±1 or ↑↓ 
The t-J model as we have seen arises from the general Hubbard Hamiltonian (1.1)in the limit U»t , as two electrons 
per site  is excluded in the order of perturbation theory. Let us now write the t-J model (1.12) in terms of the projected 
creation and annihilation operators: 
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         where the projection operators are 
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  The X- operators obey the completeness relation 
 

( )7.2.............................................................................................1
00 =+∑

σ

σσ
Ii XX     

                                                        
which ensures that the constraint of no double occupancy is satisfied. 
 
Let us express the spin and number density operators in terms of  X-operators as follows: 
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   We may now add the chemical potential µ to (2.4)to obtain 
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The hopping energy tij of  (1.1) has been replaced here by t for nearest neighbours and the exchange interaction Jij by 
J on the 2D  square lattice . 
 
SUPERCONDUCTIVE PAIRING 

 An approach to the electron  or hole d-wave pairing mechanism can be made by introducing the two 
components  Nambu  operators  
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The two time anticommutator matrix Green function in the above representation is written as 
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 The diagonal matrix elements are the normal Green functions while the non –diagonal elements represents 
the anomalous Green functions.The Fourier transform of the Green function is  
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To obtain the quasiparticle spectrum  of the system one can use the method of the irreducible. Green functions .In this 
method (Plakida N.M. et al., 1989;Kuzemsky A.L,2002),the equation of motion for the Green function is first obtained  
as 
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  The quantity [Xσ(t),H] in (3.4) is found by expressing the equation of motion for a dynamical variable X
σ
(t) in the form  
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   Now substituting eqn.(3.5)in (3.6), we have  
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In this way the coefficients ( Aσ
il)αβ are defined ,and they reflect the irreducible part of the Green function .The  normal 

components of the ( Aσ
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 the anomalous ones are (Aσ
il) 12 , (A σil)21 . The Fourier  transform  of the components are  
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In view of eqn. (3.5) ,(3.4) becomes  
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The last term represents the irreducible Green function,on one hand it is proportional to the scattering matrix 

<<LσLσ+
>> .All  inelastic processes are described by this matrix and it is proportional to higher order of t and J; on the  
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other hand it can be approximated to the chemical potential µ.We shall use the latter consideration to write (3.10) as 
follows 
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Taking the Fourier transform  of the last expression ,we can represent the result in a matrix form 
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In the diagram technique developed by (Izuymov et al.,1990) the quantity <Q
σ

> is equivalent to the end point  < Fσ0
  > = 1-nσ .When we replace Gij 

of (3.13) with the definition (3.2) we obtain the normal and anomalous Green functions respectively as 
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The quasiparticle energy spectrum is  
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Since the Green function Gij(t-t’) is a linear combination of correlation functions ,then it is clear that (3.14)and (3.15) 
may be written  in terms of the correlation functions  
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The energy gap in the quasiparticle spectrum is determined by the anomalous correlation function (3.18).The 
anomalous Green  function (3.15) can be calculated to give  
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Finding the complex value of the last equation  one obtains  
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and the correlation function is now  
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Equation (3.7) can now be solved to yield the coefficients (3.9)  in the form  
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Combining the last two expressions, a self consistent equation for the superconducting gap is obtained  
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There are two contributions to the gap  equation :the k –independent kinematic interaction (t) and the k-dependent 
exchange interaction J(k-q).The kinematic term does not contribute to the d-wave pairing (Plakida N.M,1996),as a 
result that term vanishes in (3.23).For the singlet pairing in the d-wave symmetry the gap function is  
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This gap function must be subjected to the restriction of no double occupation of the same site through the anomalous 
correlation function  
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Obviously this equation is satisfied only by the d-wave pairing gap. Thus the d-wave solution to (3.23) is  
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This is a BCS-type equation (see e.g ,Schrieffer J.R 1964) and its solution gives the critical temperature Tc .  

 
DISCUSSION 

 Based on the Hubbard operators the strong 
correlation of electrons or holes in the CuO2 plane of the 
cuprate (La1-xSrxCuO4) has been studied and found to 
yield a BCS –type spectrum in the mean field 
approximation. The irreducible Green function method is 
an approach  based on the equation of motion  for the 
two-time Green function. It naturally precipitates the last 
term in (3.10) that indicates inelastic scattering in the 
system. 
 The Hubbard operators are particularly useful 
for studying inelastic scattering since they describe the 
altered final and initial states of the system very 
adequately. 
 The greatest problem in high temperature 
superconductivity theory is the justification of pairing of 
two holes or electrons with a large Coulomb repulsion 
between them .This problem can be examined by using 
Hirsch’s (Hirsch J.E ,2009) suggestions of dressing and 
undressing of holes. 
This, however shall receive attention in another paper. 
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