
GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 17, NO. 2 2011: 159-164
COPYRIGHT© BACHODU SCIENSE CO. LTD PRINTED IN NIGER IA ISSN 1118-0579

www.globaljournalseries.com, Email: info@globaljournalseries.com

PREDICTING MORTALITY IN HEPATITIS-C PATIENTS USING AN
ARTIFICIAL NEURAL NETWORK

 OLUMIDE OWOLABI AND BARILEÉ B. BARIDAM

 (Received 1 August 2008; Revision Accepted 20 July 2010)

ABSTRACT

 We have developed an artificial neural network that is capable of predicting whether a patient suffering from
the hepatitis-C virus is likely to live or die. With test data, the system achieved 70% accuracy in determining when a
patient would live and 60% accurate in determining when a patient would die. It is hoped that with further work, the
accuracy of the system will be considerably improved.

KEYWORDS: Artificial neural networks, disease diagnosis, prognosis, hepatitis-C, machine learning.

1. INTRODUCTION
 A neural network is an information processing
paradigm that is inspired by the way the biological
nervous system (i.e., the brain) processes information
(Siganos, 1994). It can also be defined as a massively
parallel distributed processor that has a natural
propensity for storing experimental knowledge and
making it available for use (Haykin, 1994). It resembles
the brain in two respects: Knowledge is acquired by the
network through the learning process; and interneuronal
connection strengths known as synaptic weights are
used to store knowledge.

Neural networks are intuitively appealing
because they are based on a low-level model of the
biological nervous systems. The power of the brain
comes from the number of these neurons and the
multiple connections that exists between them. An
artificial neural network follows the same principle. The
main aspect of this paradigm is the processing system.
It consists of a large number of highly interconnected
processing units called neurons working in unison to
solve specific problems. An artificial neural network is
such that it is configured for just a specific application
and learns from given examples in the application
domain. Learning in biological systems involves
adjustment to the synaptic connections between
neurons; it is the same for neural networks.

An artificial neural network has the following
properties: (Patterson, 1996)
• It can receive a number of inputs and each input
comes via a connection that has a strength which
corresponds to the synaptic efficacy in a biological
neuron. Since each neuron has a single threshold value,
the activation of a neuron can be gotten by subtracting
the total threshold from the weighted sum of inputs.
• An activation signal is passed through an
activation or transfer function to get the output of the
neuron.
Neural networks have the remarkable ability to derive
meaning from complicated and imprecise data; thus they
can be used to extract patterns and detect trends that

are too complex to be noticed by humans or other
computing techniques. A trained neural network can be
thought of as an “expert” in the field it is given to
analyze. It can be used to provide projections given new
situations of interests. Other advantages include: the
ability to learn how to do tasks based on the data given
for training or initial experience; the ability to create its
own organization or representation of the information it
receives during learning time; computations can be
carried out in parallel; and it has the ability to operate
effectively on incomplete data.

Neural networks are applicable in virtually every
situation in which a relationship between the predictor
variables (independents, inputs) and predicted variables
(dependents, outputs) exists. These networks have
been built for tasks such as prediction, pattern
recognition, classification, optimization, data association,
data conceptualization, and data filtering. Although
these networks have been found in such a wide range of
applications, they suffer the drawbacks common to other
forms of expert systems. These include the inability to
capture deep knowledge as well as difficulty in clearly
explaining their actions (Liebowitz, 1997).

The ability of neural networks to associate a
given set of inputs with some particular output pattern
could be exploited to predict the outcome of an illness
given a set of symptoms. The aim of this project is to
develop a neural network that accepts the symptoms of
the Hepatitis-C virus in patients as input variables. The
network then determines, based on past observations,
whether or not a patient will survive the illness. The data
for the work were collected from Redcol Clinic, Port
Harcourt. The knowledgebase used was obtained from
interviews with doctors in the clinic and from the
literature (Novartis, 2003;
www.nlm.nih.gov/medlineplus/ency/article/).

2. NEURAL NETWORK ARCHITECTURE
 The basic unit of a neural network is the artificial
neuron depicted in Fig. 1.

159

Olumi de Owolabi , Computer Centre, University of Abuja, PMB 117, Abuja, Nigeria.
Barileé B. Baridam, Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.

 X1 w1

 Xn output
 Wn Processing element

Fig. 1: An artificial neuron

In the figure, X1, X2,…Xn are the inputs to the network,
while W1, W2,…Wn are the respective connection
weights. Each input is multiplied by the appropriate
connection weight, the products are summed and fed
through a transfer function which generates an output
(Patterson, 1996). These neurons are connected in a
distinct layer topology to get a network. Some neurons
are in the input layer, some others in the middle, that is,
the hidden layers, while the rest are in the output layer.
A neuron has two modes of operation, the training and
the use mode. In the training mode, the neuron is taught
to fire (or not) for a particular input pattern while in the
use mode, when a taught pattern is detected at the
input, its associated output becomes the current output.

A basic network has a feed-forward structure
which means that signals flow from the input, forward
through hidden units to the output units. A single layer
feed-forward network usually consists of inputs, a single
layer, the output, and maybe, a bias. Most multilayered
networks consist of three or four layers made up of one
input layer and one output layer with one or more hidden
layers depending on the problem. (Fröhlich, 1997). The
input serves to introduce the values of input variables.
The hidden and output layers are all connected to the
units of the preceding layer. Generally when artificial
neural networks are executed, the input variable are
placed in the input neurons and the hidden and output
neuron are progressively executed. Each of them
calculates its own activation value by taking the
weighted sum of the output units in the preceding layer.
The activation value is then passed through an
activation function to produce the output of the neuron.
The outputs of the output layer acts as the output of the
entire network.

3. LEARNING IN NEURAL NETWORKS
 Neural networks have to be trained to associate
a given outcome with a given set of inputs. While
learning different inputs, the weight values are changed
dynamically until their values are balanced so each input
will lead to the desired output (Haykin, 1994). Usually
the training of a network leads to a matrix that holds the
weight values between the neurons and once it has
been trained correctly, it can find a desired output using
these values. Since there are certain errors in the
learning process, the generated output is an
approximation of the perfect output.

About the commonest learning algorithm
employed in multilayered networks is the back

propagation algorithm, which is a special form of the
Delta learning rule (Fröhlich, 1997). The algorithm uses
the computed output error to change the weight values
in the backward direction like the name implies. The net
error is first gotten by using the phases in the forward
propagation algorithm. During the forward propagation,
the output of each neuron in the hidden layer is passed
through the sigmoid activation function:

)-exp(1

1
)(

x
xf

+
=

A neuron fires, i.e., contributes to the output of the
network, only if the value of the function exceeds the
threshold value for the neuron.
 Activation functions for the hidden units are
needed to introduce non-linearity into the networks.
Without nonlinearity, hidden units would not make nets
more powerful than just plain perceptrons (which do not
have any hidden units, just input and output units). The
reason is that a composition of linear functions is again
a linear function. However, it is the non-linearity (i.e., the
capability to represent nonlinear functions) that makes
multi-layer networks so powerful. The sigmoid function is
the most commonly used activation function in neural
networks (Fausett, 1994). The sigmoid output varies
continuously but not linearly as the input changes and
has been found to bear a great resemblance to the
behavior of real neurons (Alexander and Morton, 1995;
McCullough and Nelder, 1989).
 The neural network element computes a linear
combination of its input signals, and applies the
bounded sigmoid function to the result; this ensures that
the output is kept within desired range, that is, 0 - 1.
Inputs entering a neuron not only get multiplied by
weights, they also get multiplied by the neurons
characteristic equation, or transfer function. The
sigmoid function is a typical neuronal non-linear transfer
function that helps make outputs reachable. The non-
linearity is significant for a further reason. If the transfer
function were linear, each of the neuronal inputs would
get multiplied by the same proportion during training.
This could cause the entire system to "drift" during
training runs. That is, the system may lose outputs it
has already tracked while attempting to track new
outputs. A non-linearity in the system helps to isolate
specific input pathways. (Anderson, 1995; Nelson,
1990). The behavior of the sigmoid function is shown in
Figure 2.

Sum /
Transfer

160 OLUMIDE OWOLABI AND BARILEÉ B. BARIDAM

Figure 2: Sigmoid Activation Function

The training algorithm works as follows:
Step 1: Perform the forward propagation phase for an
input pattern and calculate the output error.
Step 2: Change all the weight values in the weight
matrix using the formula Weight (old) + value of change
in weights (cw),

where
 cw = learning rate * output error * output
(neuron i) * output(neuron i + 1)
 * [1 – output (neuron i + 1)]
Step 3: Go to step 1
Step 4: The algorithm is repeated until the maximum
number of training sessions have been executed.

The first input pattern is propagated through the network
using randomly selected initial weights. The same
procedure is carried out for the next input pattern but
now with the changed weight values. After the feed-
forward and back ward propagation of the second to the
last input patterns, one learning step is completed and
the grand error is calculated by summing the square of
the output errors of all the patterns. This procedure is
repeated until the error gets to zero or an approximation
of zero.

The training process can be seen as an
optimization problem, where we wish to minimize the
mean square error of the entire set of training data. Over
the training step, the network converges to an optimal
set of weights, which gives a network that can handle
any arbitrary pattern that belongs to the same class as
the training set. So, the training normally starts with a
set of arbitrary values in the range -1 to +1 and can
even be set using a random number generator. The
back-propagation training step ensures that each of the
weights converge to its optimal value for the network
(McClelland and Rumelhart, 1988).

4. CHARACTERIZING THE HEPATITIS-C VIRUS
INFECTION
Hepatitis-C infection is a disorder in which the virus and
its products result in the inflammation of the liver cells
resulting in their injury or destruction (Novartis, 2003).
Damage to the liver can impair some vital body
processes. Hepatitis C infection varies in severity from
self-limited condition with total recovery to life
threatening cases. It can take the acute form which may
last up to two months or the chronic form which persists
for prolonged periods.

The methods for diagnosing the presence of hepatitis C
include:
1. Blood test - in people suspected of having or
carrying the virus, certain substances in their blood will
be measured. The substances include:
a. Bilirubin- it is one of the most important factors
indicative of hepatitis. It is a yellow-red pigment normally
metabolized in the liver and excreted in the urine. In
people with hepatitis, the liver cannot metabolize
bilirubin leading to its high level in the blood which leads
to jaundice.
b. Liver enzymes- these enzymes such as
aspartate [AST] and alanine [ALT] are released when
the liver is damaged. Measurements of these enzymes
in the blood is indicative of hepatitis C in a patient.
2. Radioimmunoassay- special blood tests known
as Radioimmunoassay are performed which identifies
particular antibodies which are molecules in the immune
system that attack specific antigens. The assay for
individual hepatitis virus may differ.
3. Liver biopsies- a liver biopsy may be performed for
acute viral hepatitis caught in a late stage or for severe
cases of chronic hepatitis. Normally a biopsy helps to
determine the extent of damage to the liver.

Some of the symptoms of the virus, which may develop
about a month after a person is infected, include itchy
skin, fatigue, pain in joints, jaundice and cirrhosis. Some
of the more marked symptoms include:
• A large swollen abdomen known as ascites with
stomach and intestinal bleeding;
• Mental confusion, coma and a peculiar hand
flapping tremor called asterixis.
• Cirrhosis which occurs when liver cells are
destroyed between the portal tract and central veins of
the liver which leads to a buildup of a layer of scar tissue
over the liver

5. NETWORK DESIGN
The network architecture used in this work is the
multilayered type with three layers. The layers are the
input, hidden and output layers. The network consists of
ten input neurons, four hidden neurons and one output
neuron. The architecture is shown in 3. The
nomenclature used in the diagram is as follows:

PREDICTING MORTALITY IN HEPATITIS -C PATIENTS USING AN ARTIFICIAL NEURAL NETWORK 161

I1 – I10: the first input neuron to the last
input neuron;

H1 – H4: the first hidden neuron to the last
hidden neuron;

Outnet: the output neuron;
Wxi – Wyj: weight connections from neuron i in

layer x to neuron j in layer y.

The data for this work was gotten from Redcol Clinic in
Port Harcourt. The major symptoms of the hepatitis-C
virus are about twenty in number but for the
convenience of the network, only ten major symptoms
were selected for the network to learn sufficiently.

The attributes used are the following:
a. Age: 10-80
b. Sex: Male or Female
c. Fatigue: No or Yes
d. Malaise: No or Yes

e. Anorexia: No or Yes
f. Firm liver: No or Yes
g. Ascites: No or Yes
h. Bilirubin: 0.3-1.0 mg/dl (normal adult levels)
i. AST: 10-34 IU/litre (normal adult levels)
j. Albumin: 3.5-5.5 gm/dl (normal adult levels)
k. Output: Live or Die

Out of the ten input variables selected, six are nominal
while four are continuous. The data was subjected to an
attribute transformation process to fit the data for neural
network processing. Artificial neural networks process
numeric data at a fairly limited range (Bishop, 1995).
Continuous variables, in particular, might have to be
normalized by scaling them to an appropriate range for
the network. The non-numeric data like sex = {male or
female} and fatigue = {yes or no} could be represented
as 1 or 0. An example of a case that has been
transformed for the network to use is shown in Table 1.

 Connection weights

3: Network Architecture.

Age

Sex

Fatigue

Malaise

Anorexia

Liver
Firm

Bilirubin

Ascites

AST

Albumin

H2

H3

H4

H1

Outnet

Age

162

Table 1: Transformed input data.
Variable Raw value Transformed value

Age 27 0.27
Sex Male 1

Fatigue Yes 1
Malaise No 0
Anorexia Yes 1
Liver firm Yes 1
Ascites Yes 1
Bilirubin 0.90 0.90

AST 63 0.63
Albumin 4.7 0.47

6. NETWORK ALGORITHM
The network processing algorithm used in this work is as
follows:

Step 1: Initialize all the weights needed in the network
Step 2: Read all the input variables from all the cases
from a file and target output from another file
Step 3: Train the network using the input variable and
target output read from the file to get network error
 Step 3.1: Run the values of the input variables
and weights to get the network output.
 Step 3.1.1: Process the hidden layer to get
the output of the neurons in the hidden layer.
 Step 3.1.2: Process the output layer to get
the output of the output layer.
Step 4: Alter the weights in the network by using the
error gotten from the previous case.
Step 5: Go to Step 2 and repeat until the 150th case.
Step 6: Calculate the grand error by summing the
square of the errors in each case.
Step 7: Repeat all the steps until the grand error is less
than or equal to the set limit error or the maximum
number of training sessions is reached
Step 8: Save the last set of altered weights used in the
training.
Step 9: Test the network by supplying it with input
values using the last saved weights.
The cases that were available for the network were
limited based on the scarcity of data on hepatitis-c virus.

 The network was implemented as a C++
program with several modules, the most important of
which are: Initialize, Train, ProcessHiddenLayer,
ProcessOutputLayer, SigmoidHidden, SigmoidOutput,
ThresholdOutput, ThresholdHidden and AlterWeights.
The function Initialize sets up the initial weight matrix,
while ProcessHiddenLayer and SigmoidHidden compute
the outputs of the neurons in the hidden layer.
ThresholdHidden then applies the threshold function to
the hidden layer neurons to determine which to fire. The
outputs of this function go into the function
ProcessOutputLayer, which together with
SigmoidOutput computes the outputs of the output layer.
ThresholdOutput decides which of the output neurons
will contribute to the final output of the network. The

function Train is used in the training of the network; it
repeatedly calls the function AlterWeights to adjust the
weight matrix using the back-propagation method until
the training is completed.

 The network was trained with a learning rate of
2.0 and a learning error of 0.05. The weights used for
the training were random numbers ranging from -1.0 to
+1.0. The weights indicate the connection strengths and
are adjusted to their appropriate values during training.
The maximum number of training sessions was set at 15
assuming the network does not converge to the learning
error of 0.05. The number of cases used in training was
150 in number with 72 of the cases representing
patients that lived and the remaining 78 cases
representing cases of patients that died. This is about
the usual training size for neural networks. The minimum
network error gotten from this network was 6.95432 after
the maximum 15 sessions. The last set of weights used
in training was saved for use in testing the network.

7. TEST RESULTS
 The total number of cases used to test the
network was 20 consisting of 10 “lived” and 10 “died”
cases. These cases were selected at random from the
pool of 150 cases. It was observed that out of the ten
cases whose output was “live” (1), seven of them fell
into the range of 0.46 - 0.54 with the rest less than 0.40.
It was also observed that out of the ten cases whose
output was “die” (0), six of them fell into the range of
0.17 – 0.32 while the rest fell outside this range. The
results are shown in Table 2. From these results, it can
be concluded that the network is 70% accurate in
predicting cases of patients that would survive and 60%
accurate in predicting cases of patients that would die.

The interpretation of the network output is essentially a
discretization process in which network outputs ranging
from 0.0 to 1.0 are converted to a binary value ‘Yes’ or
‘No’. As usual with such process, values from 0.4 up are
converted to 1 while the rest are converted to 0. This is
to accommodate a ±10% error around the 0.5 mark. The
network has learnt to accept these value ranges during
the training step.

PREDICTING MORTALITY IN HEPATITIS -C PATIENTS USING AN ARTIFICIAL NEURAL NETWORK 163

Table 2: Test results for the neural network.
CASE NUMBER RESULT KNOWN OUTPUT

1 O.47834 1
8 0.18134 1
4 0.47421 1

39 0.47159 1
25 0.54262 1
12 0.46285 1
42 0.46677 1
14 0.32865 1
45 0.47628 1
79 0.22469 1
140 0.17466 0
146 0.39041 0
23 0.32136 0
130 0.62506 0
136 0.26811 0
96 0.32242 0
150 0.54877 0
143 0.27543 0
125 0.31143 0
7 0.40243 0

8. CONCLUSION
Neural networks are powerful classification tools when
applied to multiple variables extracted from individual
cases like in this application. In this application, they
help to predict the outcome of hepatitis-C infections. The
network described in this paper has achieved a success
rate of between 60 and 70% in predicting the mortality of
hepatitis-C patients. The success rate achieved using
the limited input data available and the few number of
test cases suggest that it would be worthwhile to carry
out more extensive testing on the network. In order to
make this neural network more realistic and accurate in
its classification, we hope to experiment on the network
architecture with a view to either increasing the number
of hidden layers or increasing or reducing the number of
units in the hidden layer. The number of training cases
used will also be substantially increased and more
extensive testing carried out.

REFERENCES

Aleksander, I. and H. Morton, 1995. An Introduction to
 Neural Computing (Second Edition), Thomson
 Computer Press.

Anderson, J. A., 1995. An Introduction to Neural
 Networks. Cambridge, MA/Bradford Books.

Bishop, C., 1995. Neural Networks for Pattern
 Recognition. Oxford University Press.

Fausett, L., 1994. Fundamentals of Neural Networks:
 Architectures, Algorithms, and Applications.
 Prentice-Hall, Inc.

Fröhlich, J., 1997. Neural networks with java.
 http://pages.cpsc.ucalgary.ca/~carman/533/prog
 ress/progress_report.doc

Haykin, S., 1994. Neural Networks: A Comprehensive
 Foundation.: Macmillan Publishing, New York.

Liebowitz, J., 1997. Handbook of Applied Expert
 Systems.: CRC Press, Boca Raton, Florida.

McClelland, J. L. and D. E. Rumelhart, (Eds.). 1988.
 Explorations in parallel distributed processing: A
 handbook of models, programs, and exercises.
 Cambridge, MA: MIT Press.

McCullough, P. and J. A. Nelder, 1989. Generalized
 Linear Models, 2nd ed., London: Chapman &
 Hall.

Medlineplus. www.nlm.nih.gov/medlineplus/ency/article/.

Morgan, N., ed. 1990. Artificial Neural Networks :
 Electronic Implementations. Los Alamitos, CA:
 IEEE Computer Society Press.

Novartis, 2003. Foundation for gerontology.
 ttp://directory.tiscali.it/Health/senior_Health

Patterson, D, 1996. Artificial Neural Networks. Prentice
 Hall, Singapore:

Siganos, Dimitrios, 1994. Neural Networks.
 www.doc.ic.ac.uk/~nd/surprise96/journal/vol4/cs
 11/report.htm

164 OLUMIDE OWOLABI AND BARILEÉ B. BARIDAM

