
GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 17, NO. 2 2011: 159-164 
COPYRIGHT© BACHODU SCIENSE CO. LTD PRINTED IN NIGER IA ISSN 1118-0579 

www.globaljournalseries.com, Email: info@globaljournalseries.com 

PREDICTING MORTALITY IN HEPATITIS-C PATIENTS USING AN 
ARTIFICIAL NEURAL NETWORK 
 
         OLUMIDE OWOLABI AND BARILEÉ B. BARIDAM 

         (Received 1 August 2008; Revision Accepted 20 July 2010) 

 
ABSTRACT 

 
 We have developed an artificial neural network that is capable of predicting whether a patient suffering from 
the hepatitis-C virus is likely to live or die. With test data, the system achieved 70% accuracy in determining when a 
patient would live and 60% accurate in determining when a patient would die. It is hoped that with further work, the 
accuracy of the system will be considerably improved.  
 
KEYWORDS:  Artificial neural networks, disease diagnosis, prognosis, hepatitis-C, machine learning. 
 
 
1. INTRODUCTION 
 A neural network is an information processing 
paradigm that is inspired by the way the biological 
nervous system (i.e., the brain) processes information 
(Siganos, 1994). It can also be defined as a massively 
parallel distributed processor that has a natural 
propensity for storing experimental knowledge and 
making it available for use (Haykin, 1994). It resembles 
the brain in two respects:  Knowledge is acquired by the 
network through the learning process; and interneuronal 
connection strengths known as synaptic weights are 
used to store knowledge. 

Neural networks are intuitively appealing 
because they are based on a low-level model of the 
biological nervous systems. The power of the brain 
comes from the number of these neurons and the 
multiple connections that exists between them. An 
artificial neural network follows the same principle. The 
main aspect of this paradigm is the processing system. 
It consists of a large number of highly interconnected 
processing units called neurons working in unison to 
solve specific problems. An artificial neural network is 
such that it is configured for just a specific application 
and learns from given examples in the application 
domain. Learning in biological systems involves 
adjustment to the synaptic connections between 
neurons; it is the same for neural networks.  

An artificial neural network has the following 
properties: (Patterson, 1996) 
• It can receive a number of inputs and each input 
comes via a connection that has a strength which 
corresponds to the synaptic efficacy in a biological 
neuron. Since each neuron has a single threshold value, 
the activation of a neuron can be gotten by subtracting 
the total threshold from the weighted sum of inputs. 
• An activation signal is passed through an 
activation or transfer function to get the output of the 
neuron. 
Neural networks have the remarkable ability to derive 
meaning from complicated and imprecise data; thus they 
can be used to extract patterns and detect trends that 

are too complex to be noticed by humans or other 
computing techniques. A trained neural network can be 
thought of as an “expert” in the field it is given to 
analyze. It can be used to provide projections given new 
situations of interests. Other advantages include: the 
ability to learn how to do tasks based on the data given 
for training or initial experience; the ability to create its 
own organization or representation of the information it 
receives during learning time; computations can be 
carried out in parallel; and it has the ability to operate 
effectively on incomplete data. 

Neural networks are applicable in virtually every 
situation in which a relationship between the predictor 
variables (independents, inputs) and predicted variables 
(dependents, outputs) exists. These networks have 
been built for tasks such as prediction, pattern 
recognition, classification, optimization, data association, 
data conceptualization, and data filtering. Although 
these networks have been found in such a wide range of 
applications, they suffer the drawbacks common to other 
forms of expert systems. These include the inability to 
capture deep knowledge as well as difficulty in clearly 
explaining their actions (Liebowitz, 1997). 

The ability of neural networks to associate a 
given set of inputs with some particular output pattern 
could be exploited to predict the outcome of an illness 
given a set of symptoms. The aim of this project is to 
develop a neural network that accepts the symptoms of 
the Hepatitis-C virus in patients as input variables. The 
network then determines, based on past observations, 
whether or not a patient will survive the illness. The data 
for the work were collected from Redcol Clinic, Port 
Harcourt. The knowledgebase used was obtained from 
interviews with doctors in the clinic and from the 
literature (Novartis, 2003; 
www.nlm.nih.gov/medlineplus/ency/article/). 
 
2. NEURAL NETWORK ARCHITECTURE 
 The basic unit of a neural network is the artificial 
neuron depicted in Fig. 1. 
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Fig. 1:   An artificial neuron 
 
  
 
In the figure, X1, X2,…Xn are the inputs to the network, 
while W1, W2,…Wn are the respective connection 
weights. Each input is multiplied by the appropriate 
connection weight, the products are summed and  fed 
through a transfer function which generates an output 
(Patterson, 1996). These neurons are connected in a 
distinct layer topology to get a network. Some neurons 
are in the input layer, some others in the middle, that is, 
the hidden layers, while the rest are in the output layer. 
A neuron has two modes of operation, the training and 
the use mode. In the training mode, the neuron is taught 
to fire (or not) for a particular input pattern while in the 
use mode, when a taught pattern is detected at the 
input, its associated output becomes the current output. 

A basic network has a feed-forward structure 
which means that signals flow from the input, forward 
through hidden units to the output units. A single layer 
feed-forward network usually consists of inputs, a single 
layer, the output, and maybe, a bias. Most multilayered 
networks consist of three or four layers made up of one 
input layer and one output layer with one or more hidden 
layers depending on the problem. (Fröhlich, 1997). The 
input serves to introduce the values of input variables. 
The hidden and output layers are all connected to the 
units of the preceding layer. Generally when artificial 
neural networks are executed, the input variable are 
placed in the input neurons and the hidden and output 
neuron are progressively executed. Each of them 
calculates its own activation value by taking the 
weighted sum of the output units in the preceding layer. 
The activation value is then passed through an 
activation function to produce the output of the neuron. 
The outputs of the output layer acts as the output of the 
entire network. 

 
3. LEARNING IN NEURAL NETWORKS 
 Neural networks have to be trained to associate 
a given outcome with a given set of inputs. While 
learning different inputs, the weight values are changed 
dynamically until their values are balanced so each input 
will lead to the desired output (Haykin, 1994). Usually 
the training of a network leads to a matrix that holds the 
weight values between the neurons and once it has 
been trained correctly, it can find a desired output using 
these values. Since there are certain errors in the 
learning process, the generated output is an 
approximation of the perfect output.  

About the commonest learning algorithm 
employed in multilayered networks is the back 

propagation algorithm, which is a special form of the 
Delta learning rule (Fröhlich, 1997). The algorithm uses 
the computed output error to change the weight values 
in the backward direction like the name implies. The net 
error is first gotten by using the phases in the forward 
propagation algorithm. During the forward propagation, 
the output of each neuron in the hidden layer is passed 
through the sigmoid activation function: 
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A neuron fires, i.e., contributes to the output of the 
network, only if the value of the function exceeds the 
threshold value for the neuron. 
 Activation functions for the hidden units are 
needed to introduce non-linearity into the networks. 
Without nonlinearity, hidden units would not make nets 
more powerful than just plain perceptrons (which do not 
have any hidden units, just input and output units). The 
reason is that a composition of linear functions is again 
a linear function. However, it is the non-linearity (i.e., the 
capability to represent nonlinear functions) that makes 
multi-layer networks so powerful. The sigmoid function is 
the most commonly used activation function in neural 
networks  (Fausett, 1994). The sigmoid output varies 
continuously but not linearly as the input changes and 
has been found to bear a great resemblance to the 
behavior of real neurons (Alexander and Morton, 1995; 
McCullough and Nelder, 1989). 
 The neural network element computes a linear 
combination of its input signals, and applies the 
bounded sigmoid function to the result; this ensures that 
the output is kept within desired range, that is, 0 - 1. 
Inputs entering a neuron not only get multiplied by 
weights, they also get multiplied by the neurons 
characteristic equation, or transfer function.  The 
sigmoid function is a typical neuronal non-linear transfer 
function that helps make outputs reachable.  The non-
linearity is significant for a further reason.  If the transfer 
function were linear, each of the neuronal inputs would 
get multiplied by the same proportion during training. 
This could cause the entire system to "drift" during 
training runs.  That is, the system may lose outputs it 
has already tracked while attempting to track new 
outputs.  A non-linearity in the system helps to isolate 
specific input pathways. (Anderson, 1995; Nelson, 
1990). The behavior of the sigmoid function is shown in 
Figure 2. 
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Figure 2: Sigmoid Activation Function 

 
The training algorithm works as follows: 
Step 1: Perform the forward propagation phase for an 
input pattern and calculate the output error. 
Step 2: Change all the weight values in the weight 
matrix using the formula Weight (old) + value of change 
in weights (cw), 

where 
             cw =  learning rate * output error * output 
(neuron i) * output(neuron i + 1) 
                       * [1 – output (neuron i + 1)] 
Step 3: Go to step 1 
Step 4: The algorithm is repeated until the maximum 
number of training sessions have been executed. 
 
The first input pattern is propagated through the network 
using randomly selected initial weights. The same 
procedure is carried out for the next input pattern but 
now with the changed weight values. After the feed-
forward and back ward propagation of the second to the 
last input patterns, one learning step is completed and 
the grand error is calculated by summing the square of 
the output errors of all the patterns. This procedure is 
repeated until the error gets to zero or an approximation 
of zero. 

The training process can be seen as an 
optimization problem, where we wish to minimize the 
mean square error of the entire set of training data. Over 
the training step, the network converges to an optimal 
set of weights, which gives a network that can handle 
any arbitrary pattern that belongs to the same class as 
the training set. So, the training normally starts with a 
set of arbitrary values in the range -1 to +1 and can 
even be set using a random number generator. The 
back-propagation training step ensures that each of the 
weights converge to its optimal value for the network 
(McClelland and Rumelhart, 1988). 
 
4. CHARACTERIZING THE HEPATITIS-C VIRUS 
INFECTION 
Hepatitis-C infection is a disorder in which the virus and 
its products result in the inflammation of the liver cells 
resulting in their injury or destruction (Novartis, 2003). 
Damage to the liver can impair some vital body 
processes. Hepatitis C infection varies in severity from 
self-limited condition with total recovery to life 
threatening cases. It can take the acute form which may 
last up to two months or the chronic form which persists 
for prolonged periods. 

 
The methods for diagnosing the presence of hepatitis C 
include: 
1. Blood test - in people suspected of having or 
carrying the virus, certain substances in their blood will 
be measured. The substances include: 
a. Bilirubin- it is one of the most important factors 
indicative of hepatitis. It is a yellow-red pigment normally 
metabolized in the liver and excreted in the urine. In 
people with hepatitis, the liver cannot metabolize 
bilirubin leading to its high level in the blood which leads 
to jaundice. 
b. Liver enzymes- these enzymes such as 
aspartate [AST] and alanine [ALT] are released when 
the liver is damaged. Measurements of these enzymes 
in the blood is indicative of hepatitis C in a patient. 
2. Radioimmunoassay- special blood tests known 
as Radioimmunoassay are performed which identifies 
particular antibodies which are molecules in the immune 
system that attack specific antigens. The assay for 
individual hepatitis virus may differ. 
3.  Liver biopsies- a liver biopsy may be performed for 
acute viral hepatitis caught in a   late stage or for severe 
cases of chronic hepatitis. Normally a biopsy helps to 
determine the extent of damage to the liver. 
 
Some of the symptoms of the virus, which may develop 
about a month after a person is infected, include itchy 
skin, fatigue, pain in joints, jaundice and cirrhosis. Some 
of the more marked symptoms include: 
• A large swollen abdomen known as ascites with 
stomach and intestinal bleeding;  
• Mental confusion, coma and a peculiar hand 
flapping tremor called asterixis. 
• Cirrhosis which occurs when liver cells are 
destroyed between the portal tract and central veins of 
the liver which leads to a buildup of a layer of scar tissue 
over the liver 
 
5. NETWORK DESIGN 
The network architecture used in this work is the 
multilayered type with three layers. The layers are the 
input, hidden and output layers. The network consists of 
ten input neurons, four hidden neurons and one output 
neuron. The architecture is shown in 3. The 
nomenclature used in the diagram is as follows: 
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I1 – I10:       the first input neuron to the last 
input neuron; 

H1 – H4:      the first hidden neuron to the last 
hidden neuron; 

Outnet:         the output neuron; 
Wxi – Wyj:    weight connections from neuron i in 

layer x to neuron j in layer y. 
 

The data for this work was gotten from Redcol Clinic in 
Port Harcourt. The major symptoms of the hepatitis-C 
virus are about twenty in number but for the 
convenience of the network, only ten major symptoms 
were selected for the network to learn sufficiently.   
 
 
The attributes used are the following: 
a. Age: 10-80 
b. Sex: Male or Female 
c. Fatigue: No or Yes 
d. Malaise: No or Yes 

e. Anorexia: No or Yes 
f. Firm liver: No or Yes 
g. Ascites: No or Yes 
h. Bilirubin: 0.3-1.0 mg/dl (normal adult levels) 
i. AST: 10-34 IU/litre (normal adult levels) 
j. Albumin: 3.5-5.5 gm/dl (normal adult levels) 
k. Output: Live or Die 
 
Out of the ten input variables selected, six are nominal 
while four are continuous. The data was subjected to an 
attribute transformation process to fit the data for neural 
network processing. Artificial neural networks process 
numeric data at a fairly limited range (Bishop, 1995). 
Continuous variables, in particular, might have to be 
normalized by scaling them to an appropriate range for 
the network. The non-numeric data like sex = {male or 
female} and fatigue = {yes or no} could be represented 
as 1 or 0. An example of a case that has been 
transformed for the network to use is shown in Table 1. 
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Table 1: Transformed input data. 
Variable Raw value Transformed value 

Age 27 0.27 
Sex Male 1 

Fatigue Yes 1 
Malaise No 0 
Anorexia Yes 1 
Liver firm Yes 1 
Ascites Yes 1 
Bilirubin 0.90 0.90 

AST 63 0.63 
Albumin 4.7 0.47 

 
 
6. NETWORK ALGORITHM 
The network processing algorithm used in this work is as 
follows: 
 
Step 1: Initialize all the weights needed in the network  
Step 2: Read all the input variables from all the cases 
from a file and target output from another file 
Step 3: Train the network using the input variable and 
target output read from the file to get network error 
 Step 3.1: Run the values of the input variables 
and weights to get the network output. 
                      Step 3.1.1: Process the hidden layer to get 
the output of the neurons in the hidden layer. 
                      Step 3.1.2: Process the output layer to get 
the output of the output layer. 
Step 4: Alter the weights in the network by using the 
error gotten from the previous case. 
Step 5: Go to Step 2 and repeat until the 150th case. 
Step 6: Calculate the grand error by summing the 
square of the errors in each case. 
Step 7: Repeat all the steps until the grand error is less 
than or equal to the set limit error or the maximum 
number of training sessions is reached             
Step 8: Save the last set of altered weights used in the 
training. 
Step 9: Test the network by supplying it with input 
values using the last saved weights. 
The cases that were available for the network were 
limited based on the scarcity of data on hepatitis-c virus. 
 
 The network was implemented as a C++ 
program with several modules, the most important of 
which are: Initialize, Train, ProcessHiddenLayer, 
ProcessOutputLayer, SigmoidHidden, SigmoidOutput, 
ThresholdOutput, ThresholdHidden and AlterWeights. 
The function Initialize sets up the initial weight matrix, 
while ProcessHiddenLayer and SigmoidHidden compute 
the outputs of the neurons in the hidden layer. 
ThresholdHidden then applies the threshold function to 
the hidden layer neurons to determine which to fire. The 
outputs of this function go into the function 
ProcessOutputLayer, which together with 
SigmoidOutput computes the outputs of the output layer. 
ThresholdOutput decides which of the output neurons 
will contribute to the final output of the network. The 

function Train is used in the training of the network; it 
repeatedly calls the function AlterWeights to adjust the 
weight matrix using the back-propagation method until 
the training is completed. 
 
 The network was trained with a learning rate of 
2.0 and a learning error of 0.05. The weights used for 
the training were random numbers ranging from -1.0 to 
+1.0. The weights indicate the connection strengths and 
are adjusted to their appropriate values during training. 
The maximum number of training sessions was set at 15 
assuming the network does not converge to the learning 
error of 0.05. The number of cases used in training was 
150 in number with 72 of the cases representing 
patients that lived and the remaining 78 cases 
representing cases of patients that died. This is about 
the usual training size for neural networks. The minimum 
network error gotten from this network was 6.95432 after 
the maximum 15 sessions. The last set of weights used 
in training was saved for use in testing the network. 
 
7. TEST RESULTS 
 The total number of cases used to test the 
network was 20 consisting of 10 “lived” and 10 “died” 
cases. These cases were selected at random from the 
pool of 150 cases. It was observed that out of the ten 
cases whose output was “live” (1), seven of them fell 
into the range of 0.46 - 0.54 with the rest less than 0.40. 
It was also observed that out of the ten cases whose 
output was “die” (0), six of them fell into the range of 
0.17 – 0.32 while the rest fell outside this range. The 
results are shown in Table 2. From these results, it can 
be concluded that the network is 70% accurate in 
predicting cases of patients that would survive and 60% 
accurate in predicting cases of patients that would die. 
 
The interpretation of the network output is essentially a 
discretization process in which network outputs ranging 
from 0.0 to 1.0 are converted to  a binary value ‘Yes’ or 
‘No’. As usual with such process, values from 0.4 up are 
converted to 1 while the rest are converted to 0. This is 
to accommodate a ±10% error around the 0.5 mark. The 
network has learnt to accept these value ranges during 
the training step. 
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Table 2: Test results for the neural network. 
CASE NUMBER RESULT KNOWN OUTPUT 

1 O.47834 1 
8 0.18134 1 
4 0.47421 1 

39 0.47159 1 
25 0.54262 1 
12 0.46285 1 
42 0.46677 1 
14 0.32865 1 
45 0.47628 1 
79 0.22469 1 
140 0.17466 0 
146 0.39041 0 
23 0.32136 0 
130 0.62506 0 
136 0.26811 0 
96 0.32242 0 
150 0.54877 0 
143 0.27543 0 
125 0.31143 0 
7 0.40243 0 

 
8. CONCLUSION 
Neural networks are powerful classification tools when 
applied to multiple variables extracted from individual 
cases like in this application. In this application, they 
help to predict the outcome of hepatitis-C infections. The 
network described in this paper has achieved a success 
rate of between 60 and 70% in predicting the mortality of 
hepatitis-C patients. The success rate achieved using 
the limited input data available and the few number of 
test cases suggest that it would be worthwhile to carry 
out more extensive testing on the network. In order to 
make this neural network more realistic and accurate in 
its classification, we hope to experiment on the network 
architecture with a view to either increasing the number 
of hidden layers or increasing or reducing the number of 
units in the hidden layer. The number of training cases 
used will also be substantially increased and more 
extensive testing carried out. 
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