Spin susceptibility in high - TC superconductivity

M. I. UMO

(Received 05 July 2012; Revision Accepted 10 October 2012)

ABSTRACT

Spin-current loop fluctuations is proposed as the mechanism of holes pairing in high temperature superconductors using the assumption of the coexistence of short-ranged antiferromagnetism with superconductivity and the Anderson’s superexchange theory. The spin-spin correlation function is calculated using the Kubo-Mori relaxation function and the magnetic susceptibility equation is derived in terms of force correlation. Also a Bardeen –Cooper-Schrieffer (BCS) type of equation is solved for the transition temperature (Tc).

KEY WORDS: Superconductivity, cuprates, superexchange, susceptibility.

INTRODUCTION

The problem of formation and stabilization of ferromagnets(FM) and antiferromagnets (AFM) was explained by Hubbard(Hubbard, 1963). According to Hunds rules the magnetic moments of the AFM sublattices exist as a result of intra atomic correlation of d-electrons as well as by their inter atomic hoppings.

The first high temperature superconductor was discovered in 1986 in the ceramic La$_2$Sr$_x$CuO$_4$, where the parent compound is AFM (Bednorz, Muller, 1986). It was soon observed that it is actually the CuO plane that is responsible for the pairing of holes, coherence and superconductivity. The Cu and O atoms have electronic configurations: $^{29}\text{Cu} = [\text{Ar}]3d^{10}4s^{1}$ and $^{16}\text{O} = 1s^22s^22p^4$. With respect to the closed shell configurations ($3d^{10}$ or Cu^{1+} and $2p^6$ or O^{2-}), the ground state of the parent compound has electrons taken from or holes added to the Cu sites. An alternative configuration for copper ion is $[\text{Ar}]3d^9 = Cu^{2+}$. On doping Sr$^{2+}$ in place of La$^{3+}$, charge balance requires that electrons be removed from the CuO plane or holes added to this plane. This electron deficiency can be compensated for by driving as many Cu atoms as the dopant concentration from Cu^{2+} to Cu^{3+}. Another possibility is the one in which the Cu^{2+} configuration remains unchanged as a result of which the oxygen site will remain deficient of electrons; this implies that holes are being added and localized at the oxygen sites. This viewpoint has been widely used by many authors (Behera, 1989; Yu Lu, 1991; Eskes, et al, 1988). In this paper we shall consider the process in which Cu is in the $3d^{10}$ and the dopant holes go to the oxygen site. Due to strong Coulomb repulsion V_{pp}, one of the holes hops to the neighbouring Cu-A site resulting in Cu$^{3+}$ ($3d^9$). The remaining hole is now in direct exchange with Cu-B ion with exchange integral J. This process is the superexchange mechanism and is based on Hunds rules. It portrays the AFM interaction between two sublattice Cu spins as due to mediation of the ligand oxygen. Superexchange as worked out by Anderson allows the ligand p-orbitals to engage in internal coupling (Anderson, 1950), as well as enforce p-orbital exchange with Cu spins, enabling the system to be FM or AFM. Now in the case of AFM, the Cu spins are paramagnetically disoriented and then each of them pair with a p-hole. Here we make the assumption that the dopant holes affect the spin moments of the lattice just as the application of heat would. The applied heat would raise the temperature of the system above the Neel temperature T_N; but since similar increase in temperature is not observed during doping, it means that doping leads to the system’s increase in kinetic energy. To lower the kinetic energy, a hole’s spin hooks up with the random Cu moment to form a quasiparticle, two such quasiparticles reach out to each other magnetically to form spin singlet pairs with d-wave symmetry. This process is made clearer in the quantum mechanics of entanglements, where for the AFM subsystems A, B the classical correlation for the density matrix $\rho_A\rho_B$ is given as

M. I. Umo, Department of Physics, University of Calabar, PMB 1115, Calabar, Nigeria.
where the weight $p_i > 0$, $\sum p_i = 1$. Recently it has been understood that once the entanglement is dynamical, the density matrix can be used to explain the phenomenon of entanglement swapping (Ilichev, 2001). This consists of the fact that for spin-half complexes the singlet state represents a state of maximum correlations of spin pairs. Thus the creation and recombination of pairs of spin-half quasiparticles establishes correlations of physical quantities in the singlet channels, and this correlations can be swapped.

The theory given in this paper allows for the formation and presence of stripes in high temperature superconductors. The occurrence of stripes was first predicted theoretically by Zaanen and Gunnarsson (Zaanen, Gunnarsson, 1989), and Machida (Machida, 1989).

The existence of stripes was first determined experimentally by Tranquada and collaborators (Tranquada, et al, 1995) and since then more experimental and theoretical findings have been made (Seibold, et-al, 2012; Vojta, 2012; Avella, et al, 2011; Abbamonte, et-al, 2012; Valla, 2012). In the present paper we consider the stripes as being formed right below the bridging oxygen of Cu-O-Cu in such a way as to be able to feed the oxygen vacancies in a conveyor-belt fashion. As already stated the oxygen holes have antiparallel spins, when these spins arrive at the Cu-3d¹⁰ sites, Cu-3d⁸ are formed and the holes pair up through the agency of the intersite effective interaction V_{eff}. As the conveyor–belt slots in the next pair of oxygen holes, their spins directions are both opposite to those of the previous hole pair. These newly arrived spins according to the Kanamori-Goodenough-Anderson (KGA)rules (Suzuki, Suzuki, 2009) will upturn the Cu spins. It turns that this process introduces the now measurable spin fluctuations in the cuprates. The AFM sublattices contain two spin magnetic moments as we know and according to basic theory of magnetism, equal and opposite spin currents link the moments. Let us denote the currents as J^+ and J^-. When the AFM system is doped, the new currents become $<J^+>$ and $<J^->$ and the correlation in the spin-current deviations is given by $\langle\Delta J^+ \Delta J^-\rangle = \langle J^+ - J^-\rangle\langle J^+ - J^-\rangle$. Thus the survival of some form of short-range magnetic order in the doped AFM allows spin-current loops to spring up, each loop connecting two holes of opposite spins together in a singlet state in such a way that the orbital part of the wave function of the pair obviously forms a $d_{x^2-y^2}$ symmetry beginning in the underdoped region of the phase diagram. Correlations of two physical quantities A, B shall be denoted by $\langle AB\rangle$ everywhere in this work and we shall study the spin-current loops and their fluctuations using the mathematical techniques developed by Zubarev (Zubarev, 1960).

The double-time Green function

The retarded double-time Green function is defined for two operators A and B as

$$G_{ij}(t, t') = \langle (A(t); B(t')) \rangle = -i\theta(t-t')(\langle[A(t), B(t')]\rangle)$$

where $\theta(t)$ is the step function and $\langle \rangle$ denotes statistical averaging. The equation of motion for the Green function is

$$\frac{d}{dt}\langle(A(t); B(t'))\rangle = \delta(t-t')\langle[A(t), B(t')]\rangle + \langle[H(t), A(t); B(t')]\rangle$$

where H is the Hamiltonian of the system. The Fourier transform of equation (2) is given as

$$G_{ij}(\omega) = \frac{1}{2\pi} \int_0^\infty G_{ij}(\omega)e^{-i\omega(t-t')}d\omega$$

That is

$$\langle(A(t); B(t'))\rangle = \frac{1}{2\pi} \int_0^\infty \langle(A(t); B(t'))\rangle e^{-i\omega(t-t')}d\omega$$

And we can write for $t' = 0$,

$$\langle(A(t); B(t'))\rangle = \frac{1}{2\pi} \int_0^\infty \langle(A(t); B(t'))\rangle e^{-i\omega t}dt$$

The Fourier transform of the equation of motion is

$$\omega\langle(A|B)\rangle = \langle(A, B)\rangle + \langle[H|B]\rangle$$
When the operators A,B are Fermi-like, the anticommutator (+ sign) is used; the commutator (lower sign) is taken for Bose-like operators, or at least when one of the two operators is Bose-like.

The Kubo-Mori functions

The Kubo-Mori relaxation function (Plakida, 2006) is defined as

\[
\langle (A|B) \rangle_\omega = -i \int_{-\beta}^0 (A(t),B)e^{i\omega t} dt
\]

where \((A(t),B)\) is the scalar function given by

\[
(A(t),B) = \int_{-\beta}^\beta \langle A(t-\lambda)B \rangle d\lambda
\]

\[
\beta = \frac{1}{T}, \quad \hbar = k_B = 1.
\]

If we substitute equation (9) in (8), we then obtain the following expression

\[
\omega \langle (A|B) \rangle_\omega = -i \langle AB \rangle
\]

From equation (6) we see that

\[
\langle (A|B) \rangle_\omega = -i \langle [A,B] \rangle
\]

Thus,

\[
\langle (A|B) \rangle_\omega = \omega \langle (A|B) \rangle_\omega + i \langle BA \rangle
\]

Since

\[
\langle AB \rangle = \langle BA \rangle e^{-\beta \omega}
\]

then equation (12) yields

\[
\langle (A|B) \rangle_\omega = i \langle BA \rangle
\]

Then we obtain the very useful equation (15) below

\[
\omega \langle (A|B) \rangle_\omega = \langle (A|B) \rangle_\omega - \langle [A,B] \rangle_\omega = \varepsilon
\]

Other relations that can be arrived at in a similar way are

\[
\langle (iA|B) \rangle_\omega = \langle (A|IB) \rangle_\omega = \langle [A|B] \rangle_\omega
\]

\[
\langle A,B \rangle = \langle A|B \rangle = -\langle [A|B] \rangle_\omega = \varepsilon
\]

Let us now consider the idea of spin susceptibility of the AFM system. From linear response theory the spin susceptibility Green function is defined as

\[
\chi(q,\omega) = -\langle (S_q^+|S_q^-) \rangle_\omega = -\sum_{R_{ij}} \langle (S_i^+|S_j^-) \rangle_\omega e^{-i\mathbf{q} \cdot \mathbf{R}_{ij}}
\]

where \(\mathbf{q}\) is the momentum, \(\omega\) is the frequency, \(S_i^+, S_j^-\) are the spin raising and spin lowering operators respectively. Using equation (15) and following Jackeli (Jackeli and Plakida, 1999) we write the last expression in the form

\[
\chi(q,\omega) = \chi(q,0) - \omega \Phi_q(\omega)
\]

Here \(\chi(q,0) = \chi_q\) is the static spin susceptibility, \(\Phi_q(\omega) = \langle (S_q^+|S_q^-) \rangle_\omega\) is the spin-spin relaxation function. Let us introduce the idea of the memory function by
where $M(q,\omega)$ is the memory function. In terms of spins we write (15) in the form

$$\omega \left((s_q^+ | s_q^-) \right) \omega = \left((i s_q^+ | s_q^-) \right) \omega = \chi(q,\omega) \frac{1}{\omega} \left((i s_q^+ | s_q^-) \right) \omega.$$

Substituting the last expression in equation (20) yields the dynamical susceptibility as

$$\chi(q,\omega) = \frac{1}{\omega} \left((i s_q^+ | s_q^-) \right) \omega.$$

On the two-dimensional lattice such as we have in the doped La$_2$CuO$_4$ the exchange of spin fluctuations between two quasiparticles of spins σ_1, σ_2 is considered the basis for the formation of the nearly antiferromagnetic Fermi liquid by Pines and co-workers (see Plakida, 2006). The interaction between the quasiparticles is then described by

$$V_{eff}(q,\omega) = g^2 \chi(q,\omega) \sigma_1 \sigma_2,$$

where the dynamical spin susceptibility $\chi(q,\omega)$ fitted to experimental data is

$$\chi(q,\omega) = \frac{\alpha \xi^2}{1 + \xi^2 (Q_{AF} - q)^2 - i\omega/\omega_{sf}}.$$

Here $\xi(T)$ is the AFM correlation length, $\hbar \omega_{sf}$ is the AFM fluctuation energy and g is the coupling constant. It is noted that strong enhancement of the spin susceptibility near the $Q_{AF} = (\pi,\pi)$ can bring about high T_c.

Making use of the formula for spectral representation of correlations, then

$$\langle f(t) f(t') \rangle = -\frac{1}{\pi} \frac{e^{-\omega(t-t')}}{1 + e^{2\beta\omega}} \text{Im} \langle f(t) f(t') \rangle \omega d\omega.$$

We can differentiate the last expression to obtain

$$\langle f(t) f(t') \rangle = -\frac{1}{\pi} \frac{\omega^4}{1 + e^{2\beta\omega}} \text{Im} \langle f(t) f(t') \rangle d\omega dt dt'$$

The force acting on the particle is defined as $F = i\chi$, so that the last expression is written in terms of forces as

$$\langle F(t) F(t') \rangle = \frac{1}{\pi} \frac{\omega^4 (1 - e^{2\beta\omega})}{1 + e^{2\beta\omega}} \text{Im} \langle f(t) f(t') \rangle d\omega dt dt'$$

One can obtain from (20) the expression

$$\chi(q,\omega) - \chi(q,0) = \frac{1}{\omega^3} (F^+ F^-)$$

Substitute this in eqn.(28) to have

$$\chi(q,\omega) - \chi(q,0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\omega^2} (U^+ U^-) \tanh \beta \omega d\omega.$$

The last equation be transformed into a gap equation for the spin fluctuating superconductor. In order to do that we make the following assumptions: the left hand side of eqn (30) is proportional to $N(0) J_{exch}^2 \delta \Delta_0$ and the spin current fluctuation on the right side is proportional to $\delta \Delta_0 J_{exch}$, where $N(0)$ is the density of states, J_{exch} is the exchange integral, $J_{exch}^2 \delta$ comes from the two vertices of spin current diagram, δ is the dopant concentration and Δ_0 is the d-wave energy gap. The assumptions come as the result of experimental observation of a resonance peak at 41 meV in doped YBCO. This peak already exists in the normal state of this
superconductor at 25 meV and doping progressively shifts the peak to the right towards higher energies where it becomes vanishingly small at higher doping.

In the superconducting state the resonance peak also shifts (Kulic,2004) to the right diminishing in height until it becomes very sharp and small at 41 meV, near 90K(close to Tc). Since the resonance occurs in the normal state and merely shifts with sharpening profile and diminishing shape in the superconducting state, then the pair could signify unoccupied pair states that are progressively occupied during doping until it can take no more dopants and then begin to disappear because of pair breaking. This is usually interpreted as the transfer of spectral weight from lower to higher energies. Kulic and Dolgov(Kulic,Dolgov,2003) have explained the peak as a singularity in the phonon energy that shifts the energy gap by 40 meV. If we adopt the same energy scale for the spin fluctuation exchange then we have \(\omega_{\text{res}} \approx 2\Delta_g \). Since the peak is observed in the susceptibility then the above assumption is valid. We can also similarly justify the other quantities in connection with the expression (30) which now becomes

\[
1 = \frac{1}{N(0)V_{\text{eff}}} \int_{0}^{\omega_s} \frac{1}{\tanh \beta \omega} d\omega
\]

Finally,

\[
T_c = 1.14 \omega_s e^{-\frac{1}{N(0)V_{\text{eff}}}}
\]

Here \(V_{\text{eff}} = 2Z_{\text{exch}} \), \(\omega_s \) is the spin wave fluctuation frequency, \(Z_e \) is a renormalization factor which is material dependent, and the density of states \(N(0)=1/(eV, \text{spin}) \). We shall take the following values(Hayden et al,1991; Plakida et al, 2001): for LaCuO, \(J_{\text{exch}}=0.13eV, \ Z_e=1.1, \ \omega_s=0.12eV, \) and for YBCO, \(J_{\text{exch}}=0.14eV, \ Z_e=1.2, \ \omega_s=0.15eV. \)

The BCS-like formula (32) yields \(T_c=47K \) for La\(_{1.85}\)Sr\(_{0.15}\)Cu\(_4\)O\(_{4}\) and \(T_c=95K \) for YBa\(_2\)Cu\(_3\)O\(_7\). The experimental critical temperature values for these cuprates are \(\approx 40K \) and \(\approx 93K \) (see for example, Manske, 2004; Villarreal and Llan, 2010). The difference in the experimental and theoretical values of \(T_c \) of each cuprate is due mainly to the almost approximate values of the quantities used in the calculation of \(T_c \) in equation (32).

REFERENCES

Kulić, M. L and Dolgov, O. V., 2003. Why is the ARPES antinodal singularity at 40 meV shifted in the superconducting state of HTSC, but the kink at 70 meV is not? arXiv:cond-mat/0308597.

