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ABSTRACT 

One area of application of the discrete wavelet transform (DWT) has been the detection and classification of 
physiological signals such as electroencephalography (EEG) signals.  Anomalies in EEGs yield very low frequency 
signals which are ideal for analysis using the DWT.  Anomalies in mechanical systems yield high frequency signals. 
The structure of the DWT makes it an un-ideal tool for the analysis of such signals.  Such signals are, however, ideal 
for analysis using the wavelet packet transform (WPT) in which Mallat’s pyramid algorithm is applied to the 
multiresolution analysis (MRA) of both the approximation and detail subspaces of a signal.  As a contribution to the 
computer-aided signal processing of non-stationary signals, this paper develops a pyramid algorithm for the discrete 
wavelet packet transform (DWPT) from two-scale relations for wavelet packets.  The algorithm is used in the 
derivation of the fast Haar discrete wavelet packet transform (FHDWPT) and its inverse.  It is found out that the 
FHDWPT is computationally as efficient as the fast Fourier transform (FFT).  
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INTRODUCTION 

Wavelet-based digital signal processing 
techniques are superior to other techniques in the 
analysis of non-stationary signals (Mallat, 
1989a;Burthiel, 2011; Mallat, 1989b).  The discrete 
wavelet transform (DWT) is one such wavelet-based 
signal processing technique.  Mallat developed a 
pyramid algorithm which made significant improvement 
to the computational efficiency of the DWT (Mallat, 
1989a). 

The DWT has been applied to the analysis of 
physiological signals such as electroencephalogram 
(EEG) signals focusing on the detection and 
classification of anomalies occurring in such signals 
[Gell-Man, 2004; Rosso, 2001].  Anomalies in EEGs 
produce low frequency signals which given the structure 
of the DWT, are ideal for analysis using the DWT. The 
structure of the DWT makes it un-deal for the analysis of 
anomalies which produce high frequency signals. Such 
anomalies occur in, for example, mechanical and 
electrical systems [Shi, 2007].  Such anomalies are best 

analyzed using the wavelet packet transform (WPT) in 
which the wavelet decomposition yields fine gradation of 
both low and high frequencies in contrast to the DWT 
which only produces fine gradations of low frequencies 
[Shi, 2007]. Efficient algorithms are, therefore, needed 
for the computer-aided analysis of signals using the 
WPT. 

This work develops a pyramid algorithm for the 
WPT starting from the two-scale relation for wavelet 
packets.  The algorithm is applied to the development of 
a fast Haar discrete wavelet packet transform 
(FHDWPT) and its inverse.  The FHDWPT is found to be 
computationally as efficient as the fast Fourier transform 
(FFT). 

Multiresolution analysis (MRA)is central to the 
DWT (Mallat, 1989c; Coifman, et al., 1992).  In MRA, a 
subspace Vj of a multiresolution approximation is 
decomposed into a lower resolution approximation 
subspace Vj-1 plus a detail subspace Wj-1. The 
decomposition is done by dividing the orthogonal 

basis�2�/�Ф�2�� − 	
�	 ∈ 
 of ��into two new orthogonal

bases

�2���� Ф�2���� − 	
� 	 ∈ 
�of  Vj-1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. (1) 

and 

�2���� ��2���� − 	
� 	 ∈ 
�of Wj-1 AAAAAAAAAAAAAAAAAAAAAAAAAAA. (2) 

which are in line with the axioms ofMRA that {Ф(t-k)}k∈Z is an orthonormal basis of  Vo and  {φ(t-k)}k∈Zis an
orthonormal basin of Wo(Mallat, 1989a). 
The DWT decomposition is represented by  

Vj = Vj-1 ⊕Wj-1  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (3)
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where W j-1 is the orthogonal complement of Vj-1 in Vj and 
denotes the sum of mutually orthogonal subspaces 
(Bulthiel, 2011). 
 
The DWT is based on wavelet decomposition (WD). The 
WD splits the original signal (S), assumed to be 
contained in subspace Vj, into two components – the 
approximation contained in subspace Vj-1 and details 

contained in subspace Wj-1 (Mallat, 1989a).  The 
approximation is made up of the low frequency 
information in the signal and the detail contains the high 
frequency information. 
 
In WD only the subspace containing the low frequency 
information is iteratively decomposed into lower time 
resolution subspaces as shown in Fig.1.

 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
Fig. 1: The Structure of Wavelet Decomposition 

 
 
 
Coifman, Meyer and Wickerhausen introduced wavelet 
packets by generalizing WD into the wavelet packet 
decomposition (WPD) (Coifman, et al., 1992).  In the 
WPD both the approximation (low frequency part) and 
the details (high frequency part) are iteratively 
decomposed into lower time resolution subspaces.  The 
WPD yields a finer gradation of frequency components 
in a full wavelet tree decomposition as shown in Fig. 2.  
The decomposition in Fig. 2 is assumed to start at some 
scale level N.  Any node of the decomposition tree is 
labeled (j,n) where j is the scale level and n is the 

number of nodes that are on its left at the same scale 
level.  Thus N-j≥0 is the level of the node in the tree. 
 
Note that at each scale level of Fig.2, the first two boxes 
from the left correspond to the DWT decomposition 
(WD). 
 
The decomposition of the wavelet subspaces in the high 
frequency section of Fig.2 parallels that of the DWT 
decomposition.  In this case, to each node (j,n) of Fig.2 
we associate a space Wj,nwhich is the direct sum of two 
orthogonal subspaces, i.e. (Mallat, 1989a);

 
 

Wj,n = Wj-1, 2n⊕Wj-1, 2n+1     AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.. (4) 
Eqn (4) will form the basis of the work reported here. 

S(Vj)) 
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Fig.2: Structure of Wavelet Packet Decomposition 
 
 
 
The purpose of this work is to present a pyramid 
algorithm for the Haar Discrete Wavelet Packet 
Transform (HDWPT) which uses two types of matrices – 
an orthogonal matrix whose elements are made up of 

the Haar scaling and wavelet coefficients and a series of 
permutation matrices.  As a departure point we 
reformulate some of the ideas of Wickerhauser 
(Wickerhauser, 1992).

 
 
PYRAMID ALGORITHM FOR WAVELET PACKETS 
 
Two-Scale Relations for Wavelet Packets 
The two-scale relations for scaling functions and for the mother wavelet function are given by 

Ф��
 =  2�! ℎ#Ф�2� − 	
#  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.. (5a) 
 

���
 =  2$%#
#

Ф�2� − 	
��������…………………………………………………………………………………………����������5b
 
 

Where {hk}k∈Z and  {gk} k∈Z are impulse responses of low-pass and high-pass filters, respectively, known as 
quadrature mirror filters  (QMF) related through 
 %# = �−1
��#ℎ��# , 	 ∈Z        AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.. (6) 
 
For  j=1, eqn (3) becomes 
 

V1=Vo⊕Wo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (7) 
 

From eqns (1) and (2) we note that {Ф (t-k)} k∈Z and {φ 

(t-k)} k∈Zform an orthonormal basis for Vo and Wo, 
respectively.  Hence eqn (6) read together with eqn (3) 
shows that the V subspace can be decomposed into a 
direct sum of two orthogonal subspaces defined by their 
basis functions which are given by eqns (5a) and (5b).  

This splitting algorithm for the V space leading to the 
DWT can also be applied to the W space representing 
high frequencies.  But, in order to make the 
development easier to understand, we first redefine the 
variables in eqns (5a) and (5b).
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Let Wo(t) = Ф(t). Then Wo(t) satisfies eqn (5a).  If we next let W1(t) =φ(t), then W1(t) would satisfy eqn (5b). 
 
Equations (5a) and (5b) now become 
 

+,��
 =  2$ℎ#
#

+,�2� − 	
����������…………………………………………………………………………………��������������8.
 
+���
 = � 2$%#

#
+/�2� − 	
����������……………………………………………………………………………… ..��������������81
 

 
Unlike WD which involved the iterative splitting of the V space, WPD involves the iterative splitting of the W space.  
The iterative splitting of the W space is achieved by defining the following sequence of functions from W0(t) and W1(t): 
 

+���
 = � 2$ℎ#
#

+��2� − 	
�������………………………………………………………………………………….���������������9.
 
+3��
 = � 2$%#

#
+��2� − 	
��������………………………………………………………………………………….��������������91
 

 

where now  {W2(t-k)} k∈Z and {W3(t-k)} k∈Zare orthonormal basis functions for the two subspaces whose direct sum 
yields W1,1. 
 
Iterating another step from eqns (9a) and (9b) yields 

+4��
 = � 2$+�
#

�2� − 	
�����������………………………………………………………………………………… ..�������������10.
 
+6��
 = � 2$%#

#
+��� − 	
������������…………………………………………………………………………………������������101
 

 

where {W4(t-k)} k∈Zand {W5(t-k)} k∈Zare orthonormal basis functions for the two subspaces whose direct sum isW1,2. 
 
Generalizing the splitting process leads to 

+�7��
 = � 2$ℎ#
#

+7�2� − 	
�����������������……………………………………………………………………………���������� �11.
 
+�78���
 = � 2$%#

#
+7�2� − 	
������… . . ……………………………………………………………………………����������111
 

 
for  n=0,1,2, A 

Now {W2n(t-k)} k∈Zand {W2n+1 (t-k)} k∈Zare orthonormal basis functions for the two subspaces whose direct sum is 
W1,n. 
 
 Note that for n=0, eqns (11a) and (11b) yield eqns (5a) and (5b), respectively. 
 

Eqns (1) and (2) are combined to form a basis for Vj. Now the sequence of functions {Wn(t)} n∈Zwith their dilations and 
translations can be used to form an orthonormal basis for a function space. 
 
The functions defined by 

{+#�,7��
 = � 2�/�+7�2�� − 	
};, 	 ∈ 
���������� ………………………………………………………………………….������������12
 
 
are said to form the (j,n) wavelet packet which is an orthogonal basis for the space Wj,n.  Eqns (11a) and (11b) thus 
form the two-scale relations for wavelet packets. 
 
The Algorithm 
A given signal f(t) can be decomposed using the basis functions given in eqn (12).  The decomposition coefficients are 
given by 

<#�.7 = �2�/� =>��
+7�2�� − 	
∞

�∞


?����������� …………………………………………………………………………… ..�����������13
 
 
Dilating eqns (11a) and (11b) by 2

j-1
 and translating them by m and applying eqn (13) to the resulting equations may 

be shown to yield. 
 

<#���,�7 = �$ℎA��#�<A�,7
A

�����������…………………………………………………………………………………………�����������14.
 
 

130                                                                                EDITH T. LUHANGA AND MATTHEW L. LUHANGA 



 

 
 

<#���,����78� = �$%A��#�<A�,7
A

�����������……………………………………………………………………………………�����������141
 
 

The coefficients<#�,�7� and�<#�,�78��can thus be successively obtained from some highest level coefficients <#C,7�for some 

large N. 
 
The Fast Haar Wavelet Packet Transform 
 

Assuming that Wo(t) = Ф(t) is the Haar scaling function and that W1(t) = φ(t)   is the Haar mother wavelet, eqn 14 may 
be shown to reduce to 
 

<#���,�7 = � 1 2 <�#
�,7 +� 1 2 <�#8��

�,7 ����������……………………………………………………………………………… ..�����������15.
 
<#���,�78� =� 1 2 <�#

�,7 −� 1 2<�#8��
�,7 �����������…………………………………………………………………………….������������151
 

 
Eqns (15) show that the (j-1)

tn
 level coefficients are obtained from the j

tn
 level coefficients through multiplication by the 

following orthogonal matrix 
 

ϴ = � 1 2 E
1 11 −1F���������������………………………………………………………………………………………………������������16
 

We assume that the signal f(t) to be decomposed and all orthogonal functions of eqn (12) which are used in signal 
decomposition have support over the unit interval [0,1).  For the orthogonal functions of eqn(12) this implies that the 
translation parameter, k, is bounded by 
 0≤ k< 2

j
 – 1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA        (17) 

The signal f(t) is also assumed to  be discretized to yield 
 
 fk = f(t=tk),  k=0,1A., M-1 AAAAAAAAAAAAAAAAAAAAAAAAAA       (18) 
 
M is set to be a power of 2, i.e. M=2

N
say with the time values, tk, being restricted to the unit interval by setting 

 

 tk  =
#
H,  k = 0,1, A,   M-1  AAAAAAAAAAAAAAAAAAAAAAAAAA        (19) 

The nesting and density axioms of MRA ( Mallat, 1989a; Mallat, 1989c) are invoked to conclude that for large values,  
N,  of the scaling parameter the approximation 
 

>��
 ≅ � 2C/�$<#C,/
#

+/�2C� − 	
��������������………………………………………………………………………… ..������������20
 
can be made to be as accurate as possible in L

2
(R) norm by proper choice of N. 

 
For N large and with relation (17) satisfied, we can assume that the scaling functionWo(t) is so narrow that it covers 
only the first data point  to = 0.  Thus by choosing a large N and translating the scaling function we can invoke the 
wavelet crime(Strang, et al., 1996) by setting the scaling function coefficients equal to the data point 
 

<#C,J =fk,  k = 0, 1, A.,  M-1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA         (21) 

 
We next express the relations ineqn (15) in matrix form.  To facilitate that we need to define the orthogonal sum of 
matrices. 
 
The orthogonal sum of two matrices A and B, denoted by A⊕B, is 

 A⊕B = EK 00 LF  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. (22) 

Now let HM represent the M x M matrix given by 

HM = ϴ⊕ϴ⊕Aϴ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (23) 
where the operation is applied M/2 times and ϴ is the matrix defined in eqn (16). 
 
Now using eqns (15) and eqn (21) we can represent the transition from Level 0 (the Level of the data fk) to Level 1 in 
Fig. 2 by 
 

M<,C��,/, <,C��,�, <�C��,/, <�C��,�, … . . , <��H��
C��,/, <�

�H��
C��,�NO = PHQ>, , >�, … . , >H��RT AAAAAAAAAAAAAAAAAA.. 

(24) 
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WhereT represents the transpose operator for vectors or matrices. 
 
To sort out the coefficients into two groups 
 

<SC��,/�and<SC��,�, T = 0,1, … . ,U − 1 

 
we apply an MxMpermutation matrix,  PM, as follows 

VH M<,C��,/, <,C��,�, <�C��,/, <�C��,�, … . , <��H��
C��,/, <�

�H��
C��,�N ������� = M<,C��,/, <�C��,/, … . , <��H��

C��,/, <,C��,�, <�C��,�, … . , <��H��
C��,�N ��… ..����25
 

 
In moving from Level 1 to Level 2 of Fig.2, the mathematical operations just described are repeated but now the 
coefficients at Level 2 are in 4 groups corresponding to n=0, n=1, n=2 and n=3.  The coefficients at scale parameter 
N-2 are thus 
 

Q<,C��,/, <,C��,�, <�C��,/, <�C��,�, … , <�WH��
C��,/,���<�

WH��
C��,�, <,C��,�, </C��,3, <�C��,/, <�C��,3, … ., 

������<�
WH��
C��,�, <�

WH��
C��,3�RT  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   (26) 

 

The matrix HM is now applied to the expression in (25) but now we apply a permutation matrix VX
Y
⊕ �VX�

Y
to sort out the 

coefficients in (26) into the 4 groups.  These operations continue until the coefficients can no longer be divided by 2 to 
create another dyadic group of coefficients.  This occurs at Level N.  The complete transformation, denoted by  H, is 
given by 
C = Hf   AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (27) 
 
where 
 

H = HM(P4⊕ A⊕P4) HM⊕ A�VZ��
�
⊕ ��VZ

�

PHVHPH AAAAAAAAAAAAAAAAAAA. (28) 

C = [<//,/, <//,�, <//,�, … , <//,A\T ]= 2
N
 – 1 

f = [fo, f1, A, fM-1]
T 

and where the orthogonal matrix sums involving P4 are applied  
H
4  times. 

Since HM is a very sparse matrix, multiplication by HM is easily shown to require only O(M) operations followed by 
O(M) operations due to application of the permutation matrix. Since these operations are repeated at each level of Fig. 
2, the operation yielding eqn (28) are O(M log M) operations – the same order of computational complexity as that of 
the Fast Fourier Transform. 
 

Since HM and PM are orthogonal matrices, H is invertible.  Since PHO = PH = �PX -1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.. (29) 
then 

P�� = PHVĤPH _VZ
�
O ⊕ �VZ

�
� `�… �PH�a4O ⊕�…��⊕ �V4O
bH 

also an O(M log M) operation 
We also have 
 f = H

-1
C            AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (30) 

 
Eqn (27) represents the Fast Haar Discrete Wavelet 
Packet Transform and eqn (30) the Inverse Fast 
HaarDiscrete Wavelet Packet Transform. 
 
With the Haar functions under consideration, the wavelet 
packets of eqn (12) may be shown to be Walsh 
functions in Paley order. 
 
Discrete Haar Series 
 
The coefficients in eqn (27) may be used to write a Haar 
series for f(t). The problem with the WPT is the choice of 
the best basis to use in representing f(t) for a given 
application (Mallat, 1989a; Wickerhauser, 1992).  The 
leaves of any admissible tree from Fig. 2 form a basis.  
An admissible tree( Mallat, 1989a) is any tree where 
each node in the tree has 0 or 2 children nodes.  This 
yields a large library of admissible bases which leads to 

an optimization problem in the choice of the best basis 
(Mallat, 1989a; Strang, et al., 1996). 
 
The leaves of any admissible tree would form an 
adequate basis for the decomposition of functions f(t).  
Not all leaves of an admissible tree fall on the same 
level of a wavelet packet tree similar to the levels in 
Fig.2 (Mallat, 1989a; Daly, 2007).  This is what makes it 
difficult to write a simple algebraic relationship to 
represent signal decomposition as is possible for the 
DWT.  One of the few exceptions where we can write an 
expression to represent signal decomposition is the 
case where all leaves of an admissible tree fall on the 
same level. 
 
Let us assume that all leaves of an admissible tree fall 
on level m (equivalent to scale parameter j=N-m). Then 
f(t) can be decomposed as
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>��
 = � 2�/� U $$<#�,7
7�

#c/

7�

7c/
+7�2�� − 	
����������…………………………………………………………………… . . …�����������31
 

Where 
 d� =�2e − 1 d� = 2� − 1 

The factor 1/ U is required to preserve the orthonormality of the wavelet packets. 
 
Note that the normalized frequencies occupied by the wavelet packets of eqn (31) are 
 

�E0, f�gF , E f�g , �f�gF , … , E��
g��
f
�g , hF�   AAAAAAAAAAAAAAAAAAAAAAAAA.       (32) 

 
Stated differently, normalized frequency bend occupied by the n’th wavelet packet is 
 

E7f�g , �78�
f�g F , d = 0, 1… . 2e − 1        AAAAAAAAAAAAAAAAAAAAAAAAAAAA.      (32a) 

 
 
EXAMPLE 
To fix ideas we consider a simple example whose data is shown below 
 
 

Table 1: Example Signal Data 

K 0 1 2 3 4 5 6 7 

fk 4 6 8 10 12 14 16 18 

For this example M=8 and so N=3, 
Recursive application of eqn (24) yields the table below 

 
 

Table 2: Results for the Example 

J N COEFFICIENTS,  <#�,7 

  K 

  0 1 2 3 4 5 6 7 

3 - 4 6 8 10 12 14 16 18 

2 0 i Y j Y kl Y km Y - - - - 

 1 − Y − Y − Y − Y - - - - 

1 0 14 30 - - - - - - 

 1 -4 -4 - - - - - - 

 2 -2 -2 - - - - - - 

 3 0 0 - - - - - - 

0 0 YY Y - - - - - -  

 1 −n Y - - - - - - - 

 2 −o Y - - - - - - - 

 3 0 - - - - - - - 

 4 −Y Y - - - - - - - 

 5 0 - - - - - - - 

 6 0 - - - - - - - 

 7 0 - - - - - - - 

 
 
We make two immediate conclusions from Table 2.  
First, if the decomposition is stopped at levels 2 or 1, the 
WPT decomposition compresses the signals energy 
more than the DWT as the latter has two coefficients 
whose values are 0. 
 

Second, we can use Table 2 to find an admissible tree 
whose leaves are not at the same level and use this tree 
in signal decomposition.  Using the nomenclature of 
Fig.2 we choose an admissible tree whose leaves are at 
nodes (2,0), (1,2) and (1,3). 
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The decomposition of f(t) is 
 

>�p
 = �
� � [5 2��q�2�+/�4�
 + �9 2�q2�+/�4� − 1
 + 13 2�q2��+/�4� − 2
 + �17 2�q2�+/�4� − 3
 − 2q 2�+��2�
 −

2q 2+��2� − 1
\ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (33) 
Using eqn (9a) we get 
W2(t) = W1(2t) + W1(2t-1) 
 
then 
 
W2 (2t) = W1(4t) + W1(4t-1) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (34) 
 
and 
 
W2(2t-1)  = W1(4t-2) + W1(4t-3) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (35) 
 
Using eqns (5), (34) and (35) in eqn (33) reproduces the values of f(t) given in Table 1. 
The coefficients corresponding to the DWT are obtained from rows  
   2,0 
   1,0 
  and 0,0 and 0,1 
 
 
 

CONCLUSION 
 
A pyramid algorithm for the discrete wavelet packet 
transform has been derived by the dilation and 
translation of wavelet packets.  The algorithm has been 
used to yield an 0(M log M) Fast Haar Wavelet Packet 
Transform and its inverse.  The algorithm has been 
applied to a simple illustrative example. 
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