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ABSTRACT

This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate
approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI),
Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in the State from 1997 to
2011. The monthly Cumulative clinical cases of aforesaid childhood diseases constitute vector time series. Pre-
whitening approach was employed to determine whether the components of vector series are interrelated so that each
series can be predicted on the bases of lagged values of itself and others. This process revealed that except tetanus;
malaria, URTI, Pneumonia and anaemia series are interrelated. Hence, the four interrelated time series were
considered in the multivariate analysis. Order selection criteria were employed to determine the order of the vector
autoregressive (VAR) model to be fitted to these series. It was discovered that VAR(1) model fitted well. Diagnostic
checks were applied to ascertain the adequacy of the model and VAR(1) model was found appropriate. Forecasts
were generated. The model revealed that upper respiratory tract infection, pneumonia and anaemia are linked to or
caused by malaria.

KEYWORDS: Multivariate Approach, Pre-whitening, Vector Time Series, Vector Autoregressive Model,
Diagnostic Checks and Forecasts

INTRODUCTION

Childhood diseases are diseases that affect
children between the ages of zero to 14 years. Some
common childhood diseases include chickenpox,
influenza, measles, whooping cough, anaemia, asthma,
malaria, tetanus, pneumonia, upper respiratory tract
infection (URTI), polio, tuberculosis, fever, HIV/AIDS,
etc. However, the most common ones in Nigeria are
malaria, upper respiratory tract infection (URTI),
Pneumonia, anaemia and tetanus.

Diseases can be devastating for anyone, but it
seems particularly unfair when they attack children.
Unfortunately, many diseases seem to take a special
interest in infecting the children more frequently and
vigorously than the adults. Children are more
susceptible to diseases for a number of reasons. The
major reason for children’s increased susceptibility is
that they are often exposed to diseases, yet they have
not built the immunologic defenses required to fend off
certain diseases (Perlin and Cohen, 2002).

UNICEF (2009) disclosed that no fewer than
one million Nigerian children, especially those below the
age of five, are lost yearly to preventable childhood killer
diseases. Nigeria is one of the least successful African
countries in achieving improvement in child survival in
the past four decades, in spite of Nigeria’s wealth in
human and natural resources. Infant and childhood

mortality rates are exceedingly high, and Nigeria ranks
15th highest in the world among countries with high
under-five mortality.

Malaria destroys the red blood cells thereby
causing anaemia. Anaemia is a common manifestation
of malaria caused by four species of plasmodia.
Prolonged malaria reduces the immunity of the body
which may give rise to URTI and pneumonia.
Pneumonia results from a failure of a series of host
defense mechanisms that keep the respiratory tract free
of infection. Many patients with pneumonia will have had
mild upper respiratory symptoms and malaise for
several days before the onset of pneumonia. (Stein et al,
1994)

Sometimes children have an illness that is not
curable but persists into adulthood. Coping with
childhood illness can be very difficult at first, not only for
the child, but for the whole family. In addition to the
child’s physical health and medical needs, one needs to
manage the feelings that come with all the changes and
health issues (Sawyer et al, 2003).

Purohit et al (1998) examined the effect of
seasonality and other temporal patterns on the
occurrence of rotavirus diarrhea among hospitalized
cases at Pune, India using Box and Jenkins approach.
Seasonal autoregressive integrated moving average
(SARIMA) model was fitted to the data. The model
suggested strong influence of climatic changes on the
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incidence of the disease.
Vanbrackle and William (1999) examined the

statistical properties in detecting unusual patterns of
reported cases of diseases from the Centre for Disease
Control and Prevention. ARIMA models fitted to the
reported cases of different diseases were used to
generate one-step ahead forecasts.

Wangdi et al (2010) focused on modeling and
forecasting of malaria incidence in endemic districts of
Bhutan using time series and ARIMAX analysis.
SARIMA (2,1,1)(0,1,1) was found appropriate to fit the
overall endemic districts and was used to forecast the
number of cases in these areas. Inconsistency was
noticed in the forecast using ARIMAX model.

Gharbi et al (2011) studied the incidence of
dengue in Guadeloupe, French West Indies using Box
and Jenkins approach to fit seasonal autoregressive
integrated moving average (SARIMA) model to
incidence of dengue using clinical suspected cases.

Tian et al (2012) examined the effects of
ambient temperature on coronary heart disease (CHD)
mortality in Beijing, China, using both time series and
time - stratified case- cross over models. Time series
models had a better fit than time-stratified case – cross
over models.

Abeku et al (2014) assessed the accuracy of
different methods of forecasting malaria incidence from
historical morbidity patterns in areas with unstable
transmission. Simple seasonal adjustment methods
outperformed a statistically more advanced ARIMA
method.

This work seeks to build multivariate time series
model to interrelated childhood diseases so that each
series can be predicted on the bases of lagged values of
itself and others.

METHODOLOGY

According to Box et al (2008), in the study of multivariate
processes, a framework is needed for describing not

only the properties of the individual series but also the
possible cross relationships among the series. These
relationships are often studied through consideration of
the correlation structures among the component series.
Pre-whitening is used in this work to determine the
interrelationship among time series.

2.1 Prewhitening of vector Time Series
According to Brockwell and Davies (2002),

vector time series are pre-whitened by transforming the
series to white noise by application of suitable filter
before computing the cross-correlations. For example, if
{X } and {X } are invertible ARMA (p,q) process, this
can be achieved by the transformationsZ = ∑  ,

where ∑  B = ϕ ( )
 ( )

and ϕ ,  are the autoregressive and moving average
polynomials of the ith series, i = 1,2.

It is convenient to replace the sequences {Z }
by the residuals {w } after fitting a maximum likelihood
ARMA models to each of the component series. If the
ARMA models were infact the true models, the series{w } would be white noise sequences for i = 1,2.
2.2 Multivariate Time Series

Multivariate time series analysis is the study of
statistical models and methods of analysis that describe
the relationships among several time series (Box et al,
2008). Here we consider -related time series variables
of interest in a dynamic system = (X , , X , , … , X , )
and wish to gain a deeper understanding of the dynamic
relationships over time among the series and to improve
accuracy of forecasts for individual series by utilizing the
additional information available from the related series in
the forecasts for each series.

234 B. A. EFFIONG AND D. W. EBONG



2.2.1 Vector Autoregression
A vector autoregression is a system in which each variable is regressed on a constant and p of its own lags as

well as on p lags of each of the other variables in the vector autoregressive (VAR) model (Hamilton, 1994).
Let = (X , , X , , … , X , )′ denote (m × 1) vector of time series variables. The pth-order vector autoregressive

model denoted VAR(p) has the form= + Ф + Ф +⋯+ Ф + … … … … … … … … … … … … … … . . … … … … … … … … …. ( )
Here C denotes an ( × 1) vector of constants and Ф an ( × ) matrix of coefficients for = 1,2, … , . The( × 1) vector is a vector generalization of white noise.( ) = for t = s( ′ ) =

0 for t ≠ s
where an ( × ) symmetric positive definite matrix. Using lag operator notation, (1) can be written in the form

[ − Ф − Ф − … − Ф L ] = + … … … … … … … … … … … … … … … … … … … … … … … … … . … … ( )
Here Ф(L) indicates an ( × ) matrix polynomial in the lag operator L. Vector autoregression is covariance
stationary if all values z satisfying | − Ф z − Ф z … − Ф z | = 0 lie outside the unit circle.

2.2.2 Covariance and Correlation Matrices of VAR(1) Process
The relationship among components of the vector series are often studied through consideration of the

correlation structures among the component series (Box et al, 2008).
In particular, let us suppose that is a stationary VAR(1) model= µ + Ф +
where is × 1 vector white noise with mean zero and covariance matrix, .
Alternatively, the process may be written in mean adjusted form as− µ = Ф − µ + … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …. ( )
Post multiplying (3) by ( − µ)′ and taking expectations gives

(0) = Ф (−1) +  = Ф ′(1)+ , = 0 … … … … … … … … … … … … … … … … … … … … … . . … … ( )
and

(k) = Ф (k − 1), > 0 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .. ( )
If Ф and covariance matrix (0) are known, (k) can be computed recursively using (5).
If Ф and  are given, (0) can be determined using (4) and (5)
For VAR(p)  model, we have,

(0) = Ф ′(1) +⋯+ Ф ′(p) +  , = 0 … … … … … … … … … … … . … … … … … … … … … … … … … ( )
and

(k) = Ф (k − 1) +⋯+ Ф (k − p), > 0 … … … … … … … … … … … … … … … … … … … … … . … … … .. ( )
Given the matrices (0), (1),⋯, (k), (7) can be used to determine the coefficient matrices Ф ,⋯ , Ф . The
correlation matrix function for the vector process is defined by(k) = (k) =  (k) , = 1,2,⋯ , and = 1,2,⋯ , … … … … … … … … … … … … … … … … … … …. ( )
where D is the diagonal matrix in which the ith diagonal element is the variance of the ith process. That is,= diag[ Υ (0), Υ (0), … , Υ (0)] … … … … … … … … … … … … … … … … … … … … … … … … … … . … … . … ( )
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2.2.3 Criteria for VAR Order Selection
The selection criteria for VAR(p) models is given byMSC(p) = ln Σ(p) + CT. (K, p) … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … ( )

where Σ(p) = T ∑ ε  ′ is the maximum likelihood estimate of Σε obtained by fitting a VAR(p) model, CT is
a nondecreasing sequence of real numbers that depend on the sample size T, K is the dimension of the time series
and(K, p) = pK is the number of VAR parameters in a model of order p, (Lutkepohl, 2005).

The most commonly information criteria for selecting lag orders are the Akaike (AIC), Schwarzt-Bayesian (BIC) and
Hannan-Quinn (HPC).AIC(p) = ln Σ(p) + pK … … … … … … … … … … … … . … … … . . … … … … … … … … … … … … … … … … … … … … ( )

where K is the number of freely estimated parameters.
The estimate ̂(AIC) for p is chosen so as to minimize the value of the criterion.
Also, BIC(p) = ln Σ(p) + pK … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . … ( )

The order estimate ̂(BIC) is chosen so as to minimize the value of the criterion.
The third criterion,HQC(p) = ln Σ(p) + pK … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . … … . . .. (13)

The estimate ̂(HQC) is the order that minimizes HQC(p) for = 0,1,⋯ , .
The AIC criterion asymptotically over estimates the order with positive probability, whereas the BIC and HQC criteria
estimate the order consistently under fairly general conditions if the order of p is less than or equal to P .
2.2.4 Diagnostic Checking of VAR Models
Here, Portmanteau test is usually employed to test for the overall significance of the residual autocorrelations of a
VAR(P) model up to lag h (Lutkepohl, 2005). The hypothesis is given as,H : = 0H : ≠ 0
where ( = 1,2,⋯ , ℎ) are the autocorrelation matrices.
The test statistic for large T and h is

Ǫh = T ∑ tr Ci
I
C0

1
CiC0

I … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …h
i 1 (14)

For T  , T
T2(T i) 1 1 and thus Ǫh has the same asymptotic distribution as Ǫh . That is,

Ǫh ≈ 2
, K2(h p) … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .. ( )

where is the dimension of the time series and are the estimated autocovariance matrices of the residuals and
the estimated variance for the residuals.

3.0 Modeling as Multivariate Time Series
Vector autoregressive (VAR) model was fitted to (malaria, URTI, pneumonia and anaemia). The VAR lag

selection system with maximum lag order of 15 is tabulated in Table 2.0.  AIC, BIC and HPC were employed to
estimate the order, p, of the VAR model. The order with the minimum values of AIC, BIC and HQC is 1. Hence,
VAR(1) model was tentatively identified. The estimates of the parameters of VAR(1) model were obtained with the aid
of Gretl software. The parameter estimates, standard error and t-ratio for the VAR(1) model are presented in Table
3.0. The estimated VAR(1) model is

⎣⎢⎢
⎡ ,,,, ⎦⎥⎥
⎤ = 37.6789−0.84187.145113.4230 + 0.79630.1789 0.11570.4052 0.6733 −0.05550.4905 −0.05910.0133 −0.0117 0.4621 0.00160.0534 −0.0169 0.1415 0.4430 ⎣⎢⎢

⎡ ,,,, ⎦⎥⎥
⎤ … … … … … … … … … . … … … … … … … . . . ( )

4.0 Diagnostic Checks

To ensure adequacy of the model and guard against model misspecification, diagnostic analysis of the residual series
( ) was carried out. The autocorrelation matrices of the residuals from VAR(1) model fitted to the interrelated time
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series appear to be multivariate white noise process. To confirm the overall significance of the residual autocorrelation
matrices, Portmanteau test was carried out and. Q-statistic = Ǫ44 = 710.333 was computed using (14) from residual
autocorrelation matrices and the critical value was computed using (15) as follows:

Ǫ ≈ 2
, 2( ) = 2

0.05(688) = 750.131

Since = 710.333 <  . (688) = 750. 131. We conclude that the fitted VAR(1) model is adequate. The parameters
of VAR(1) model (Table 3.0) that are less than 2 times their estimated standard errors were regarded as insignificant
and were set to zero. Thus, the resulting VAR(1) model in matrix form is

⎣⎢⎢
⎡ ,,,, ⎦⎥⎥
⎤ = 37.6789−0.84187.145113.4230 + 0.79630.1789 00.4052 0 00 00.0133 0 0.4621 00.0534 0 0 0.4430 ⎣⎢⎢

⎡ ,,,, ⎦⎥⎥
⎤ … … … … … … … … … … … … … … … … (17)

The above model (17) is the final proposed model for the vector series on which the forecasts (Table 4.0) are based.
The model revealed that upper respiratory tract infection, pneumonia and anaemia are linked to malaria.

5.0 RESULTS AND DISCUSSION
First and foremost, we considered the correlation
structures among the component series. Pre-whitening
of the various series was done to determine the
interrelationship among them. Here, various univariate
models [ARIMA (1,1,1), IMA (1,2), ARIMA (1,0,0),
ARIMA (2,0,0) and ARIMA (1,0,0)] fitted well to
individual series [malaria , ), URTI ( , ), pneumonia
( , , anaemia ( , ) and tetanus ( , ) respectively] and
their residuals were obtained. The correlation matrices
at few lags (( ), = 0,1,2,3) were computed from
these residuals and the residual autocorrelation
matrices, ( ), = 1,2,3 appear to be multivariate
white noise process. The correlation matrix, (0), of the
residuals shown in table1.0 reveals that while tetanus
series is uncorrelated with the other series at 5% level of
significance; malaria, URTI, pneumonia and anaemia
are interrelated. Thus, the four interrelated series were
considered for the multivariate analysis. Vector
autoregressive (VAR) process was fitted to the
interrelated series. Order selection criteria were
employed to determine the lag length of the vector
autoregressive (VAR) process. It was discovered that
VAR(1) model fitted well. Diagnostic checks were
applied to ascertain the adequacy of the model and
VAR(1) model was found appropriate. Hence, forecasts
were generated for interrelated series using VAR(1)
model.

CONCLUSION

Malaria, URTI, pneumonia and anaemia are
interrelated, but unrelated to tetanus series. Hence,
Malaria, URTI, pneumonia and anaemia are
components of multivariate time series. VAR(1) model
provides adequate representation of interrelated time
series. Forecasts generated from VAR(1) model indicate
gradual decrease in the occurrence of malaria, URTI,
pneumonia and anaemia. Also, the model revealed that
upper respiratory tract infection, pneumonia and
anaemia are linked to or caused by malaria

RECOMMENDATION
Patients diagnosed with any of these three

diseases (URTI, pneumonia and anaemia), treatment
should be administered simultaneously with the
treatment of malaria.

Scientist involved in modeling stochastic
process should not neglect the inclusion of other lagged
variables that may likely affect the variable under
consideration. From this work, it is apparent from the
correlation matrix that different diseases are interrelated
as supported by the medical scientists (Stein et al,
1994). Thus, analysis of this type can unfold some
hidden relationship among diseases. We therefore
recommend that specialist in this field of study should be
given a chance to contribute in the health sector.
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APPENDIX 1

FIGURE 1.0: Time Series Plots of Malaria, URTI, Pneumonia and Tetanus Series
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APPENDIX 11

Table 1.0: Residual Correlation Matrix Obtained from the Fitted Univariate Models0

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1−. 466(.000). 213(.004). 341(.000)

. 466(.000)1−. 129(.084). 329(.000)

. 213 . 341 −.070(. 004) (.000) (.352). 129 . 329 −.114(.084) (.000) (.128)1 . 198 .012− (.008) (.872). 198 1 −.023(. 008) − ( .763)−.070 −.114 . 012 −.023 1(.352) (.128) (.872) (. 763) −⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

where the values in parenthesis are the significance level

Table 2.0: VAR Lag Selection System with Maximum Lag Order of 15
Lags Loglik P(LR) AIC BIC HQC
1 -3052.20615 37.238862* 37.615341* 37.391688*
2 -3040.61215 0.10880 37.292268 37.969929 37.567355
3 -3029.47997 0.13486 37.351272 38.330116 37.748619
4 -3010.06598 0.00115 37.309891 38.589917 37.829498
5 -3001.95987 0.43825 37.405574 38.986783 38.047442
6 -2985.46434 0.00741 37.399568 39.281959 38.163696
7 -2978.50267 0.60442 37.509123 39.692697 38.395512
8 -2963.84521 0.02190 37.525396 40.010153 38.534045
9 -2955.94136 0.46646 37.623532 40.409471 38.754441
10 -2933.44814 0.00014 37.544826 40.631947 38.797996
11 -2918.89871 0.02328 37.562409 40.950713 38.937839
12 2910.00971 0.33706 37.648603 41.338089 39.146294
13 -2897.76826 0.07947 37.694161 41.684830 39.314112
14 -2884.33043 0.04289 37.725217 42.017069 39.467429
15 -2872.26065 0.08650 37.772856 42.365891 39.637329
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Table 3.0: Estimates of the Parameters, Standard Error and T-Ratio for VAR(1) Model
Coefficients Estimates Std. Error t-ratio

37.678 15.0659 2.501
0.7963 0.0658 12.501
0.115 0.1199 0.9652
0.6733 0.6565 1.026
-0.0555 0.2438 -0.2277
-0.8418 0.3344 -0.08146
0.1789 0.0451 3.964
0.4052 0.0822 4.928
0.4905 0.4503 1.089
-0.0591 0.1672 -0.3537
7.1451 1.6070 4.446
0.0133 0.0065 1.898
-0.0117 0.0128 -0.9114
0.4621 0.0700 6.600
0.0016 0.0260 0.0603

13.4230 4.5002 2.959
0.0534 0.0197 2.717
-0.0169 0.0358 -0.4708
0.1415 0.1961 0.7215
0.4430 0.0728 6.084

Table 4.0: One-Step Ahead Forecast of Interrelated Childhood Diseases using VAR(1) Model
Month Malaria( ) S.E URTI( ) S.E Pneumonia( ) S.E Anaemia( ) S.E

Jan 391 39.0 179 37.4 19 7.4 73 20.7
Feb 349 60.7 142 44.9 21 8.4 67 23.4
Mar 316 73.7. 119 48.9 22 8.9 62 24.3
April 289 82.3 104 51.6 22 8.9 58 25.1
May 268 86.2 93 53.4 21 8.4 55 25.3
June 251 92.3 84 54.7 20 8.0 52 25.6
July 237 95.2 78 55.6 20 8.0 50 25.8
Aug 226 97.2 73 56.2 20 8.0 48 26.1
Sept 218 98.2 69 56.7 19 7.4 47 26.2
Oct 211 99.2 66 57.1 19 7.4 46 26.3
Nov 206 100.6 64 57.3 19 7.4 45 26.4
Dec 202 101.5 62 57.5 19 7.4 44 26.6
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