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ABSTRACT

This paper deals with solving Poisson’s equation with conditions on Dirichlet’s limits in an isosceles trapezium with two
cracks. The large singular finite elements method used gives satisfactory results in all the domain of study. Numerical
values obtained are very accurate for the constraint function and its first derivatives except at the ends of cracks
where major changes were registered.
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INTRODUCTION

Poisson’s equation is used in many fields of
physics. For example, the study of the elastic
deformation of a horizontal membrane applied to
distributed load, that of low bar torsion or the flow in a
pipe [1-2]. It is also used in many other areas,
dissemination of pollutants, heat conduction [3-4],
electromagnetism [5], universal gravitation, speed
potential, vorticity [6], [etc.]. Solving Dirichlet’s problem
for Poisson’s equation on a domain with cracks is
particularly difficult. Indeed, at these points ,i the
series corresponding to the solution of the
homogeneous equation associated with the Poisson’s

equation are: 
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1r , shows derivatives tending
towards infinity near the end of the crack [7]. Common
methods of finite elements or finite differences provide
unsatisfactory results when they are used under their
standard form. These methods, as shown by various
authors [8-13], may be slightly improved if they take the
analytical form of the solution near singularities into
account. Let’s take an isosceles trapezium made of
three equilateral triangles, with two cracks and
submitted to the torsion. Large singular finite elements
method is used to solve this problem. The rationale of
the method and its convergence properties are
discussed by [14-15].

MATERIALS AND METHODS

The low bar torsion with polygonal section has

been studied using both border collection method
Kolodzied and Fraska [16] and Trefftz’s integral for
complex torsion function, Hassenplug [17]. The
equations of the thin bar torsion of the right section Ω
are given by Landau [1], Timoshenko and Goodier [18].

Δu(x, y) = −1; (x, y) ∈ Ω …………………………. (1)
u(x, y) = 0; (x, y) ∈ ∂Ω ……………………………….. (2)

The domain Ω of R2 is the right section which is a
trapezium made of three equilateral triangles with
reduced length 2. It bears two cracks. One, from the
summit, makes an angle of 60° with the adjacent side to
this summit and the other, from the middle of the large
basis, makes an angle of 60° with it. Both cracks have
the same length (figure 1). The function u is a potential
of constraints from which we can deduct, by derivation,
the non null components (3) and (4) of the constraint
tensor at any part of the bar. As to ∂Ω , it is the border of
the domain Ω.
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In expressions (1) to (4) x and y are Cartesian
coordinates of the point with a domain Ω and z is the
direction that makes a tri-rectangular trihedron with the
directions of axes x and y of the plane containing  .
G is the sliding module  and  the unitary torsion
angle.
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The problem then posed is singular because of the four
summits of the domain and the two cracks. Considering
the study domain allows us noticing that it is not
necessary to focus on any symmetry. We must then
consider the entire trapezoid domain, which makes the
problem more complicated. We will solve it through
three steps using large singular finite element method
[14]. The large singular finite element method (LSFEM)
requires knowledge of the asymptotic solutions of the
Poisson equation in the neighborhood of a corner. It is
part of the domain decomposition methods. The semi-
analytical solutions thus obtained take into account the
existence of cracks which correspond to angles of
opening 360 °. LSFEM does not eliminate cracks in the
field.

Step 1: Factorization of the Domain
The first step of the method provides the

factorization of the domain into many subdomains as
there are singularities. The trapezium is divided into
fourteen subdomains involving the use of five pseudo
singularities 2 , 6 , 8 , 10 et 14 and twenty-five
sub-borders as shown in red. It can also be noticed that
at the start of the cracks, there are always two merged
singularities 3 and 5 , on the one hand, and 11 and

13 on the other hand. Five subdomains have 60°

angles, including two with 120° ( 3 and 9 ), the
opening of the five pseudo singularities is 180°, while at
cracks summits, the opening is 360° (figure 1).

Figure 1: Trapezium with two cracks – factorization of the domain into 14 subdomains.

Step 2: Solving auxiliary problems.
The second step consists in solving auxiliary

problems related to singularities. So, to each
subdomain j are given an origin j , a singularity, an

angle j , the opening angle of the subdomain and a

local system of the polar coordinates ),( jjr  . It should
be that conditions on limits associated with auxiliary
problems are all Dirichlet-like. .
For each subdomain j , we solve the auxiliary
problem:

1),(  jjj ru  jjjr ),(  ………….. (5)

0)0,( jj ru ……………………………….... (6)

0),( jjj ru  …………………………………. (7)

With 14,...,1j .

We check that solutions to auxiliary problems related to
singularities j with 14,....,2,1j may be written as
follow [14]
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provided that we give to each subdomain j , the
appropriate value of the opening angle and that we pose

j
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  with 14,....,2,1j and  ,....,2,1k .

Practically, we must keep to approximate solutions. The
approximation is due, on the one hand, to the fact that
developments (8) should be limited to a finite number of
terms and, on the other hand, that we must keep, with
few exceptions, to an imperfect alignment. The number
of coefficients kept in each of the sums has been
chosen according to Descloux and Tolley [10] principle
which aims at representing approximate solutions with
functions that are as uniform as possible. This allows
reaching an overall homogeneity for approximate
solutions. This can be reached by selecting more terms
for subdomains where openings are larger. We decide
to keep a number of coefficients jka proportional to the

opening angle )14.,..2,1( jj of the extension *
j

of the subdomain j . As the highest common divider of
all these angles is 60°, we may infer from the
proportionality rule that we should keep N arbitrary
constants in the series related to 60° angles, 2N for 120°
angles, 3N for 180° angles and 6N at cracks ends.
Therefore, the first approximation obtained for N=1 will
allow solving a system of 36 equations with 36
unknowns and the nth approximation will derive from a
system of 36N unknowns.

Step 3: Aligning auxiliary solutions
The third step of the method consists in aligning

auxiliary solutions. We limit the series to a number of
finite terms as explained above and we align solutions of
auxiliary problems according to the continuous least
squares. We should find coefficients kla that allow
minimizing the function.
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These coefficients are a solution to a linear algebraic
system with a positive square matrix of 36N equations
with 36N unknowns conventionally known as Gauss’s
normal equations.
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The accuracy of the approximate solutions is directly
related to the quality of the alignment of the auxiliary
solutions. It is therefore natural to characterize this
accuracy by measuring the imperfections of the
continuity conditions. We will use the measurement of
the global error defined in (11).

kl
lk l

l

k

k
lk

kl

ds
n

u

n

u
uu

S
I

kl

 
  



























2

2)(
1

…. (11)

Where klds is the arc length of kl and klS its length,

kn and ln the external norms of the sub-border
separating both adjacent subdomains. If the global error
is null, the approximate solution obtained coincides with
the exact solution.

If the number of coefficients kla kept increases, the
algebraic system to solve become more and more badly
conditioned and the matrix of the system may become
numerically singular. The numerical conditioning of an
algebraic system is conditioned using the number of the
spectral condition of its matrix known as conditioning.
The conditioning χ(A) of the square matrix is the product
of the Eucludean norms of A and its inverse A-1 [19]

1.)(  AAA ……………………………… (12)

RESULTS AND DISCUSSION

The mode of convergence of the large finite
singular elements is exponential as shown in the graph
in figure 2 where we see the evolution of the 10-base
logarithm of the alignment global error according to the
approximation order N (36N being the total number of
coefficients kla kept in the series characterizing the
solutions to auxiliary problems). The smallest global
error is 2.93×10-11. It is calculated using N=14. The
function u may therefore be calculated with at least 12
precise digits. These hypotheses are confirmed by
numerical values entered in table 1.
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Table 1: Trapezium with cracks – Values of the deflection and its derivatives at sub-borders meeting point 410 , 412
et 1012 .

N u

x

u




y

u




36 0.133480794103 0.0643109023 -0.0118640850
72 0.145109744339 0.0550931417 0.0340923007
108 0.145065081964 0.0561144691 0.0335274750
144 0.145011269777 0.0561745858 0.0329989531
180 0.145009778910 0.0561012299 0.0329803370
216 0.145011392808 0.0560971376 0.0330016235
252 0.145011470902 0.0561000945 0.0330027005
288 0.145011438790 0.0561004261 0.0330020039
324 0.145011436302 0.0561002936 0.0330019366
360 0.145011437516 0.0561002803 0.0330019659
396 0.145011437699 0.0561002852 0.0330019692
432 0.145011437678 0.0561002858 0.0330019682
468 0.145011437673 0.0561002858 0.0330019680
504 0.145011437674 0.0561002858 0.0330019681
540 0.145011437674 0.0561002858 0.0330019681

Besides the global error, the figure 3 shows, depending
on 36N, the 10-base logarithm of the conditioning of the
matrix of the system. It can be noticed that the matrix-
based conditioning worsen when N increases, which
shows the degradation of numerical results when N is

above 15. However, this is not prejudicial since, to the
best of our knowledge, the accuracy obtained based on
N=5 is already above what we can get using numerical
methods other than LSFEM.

Figure 2: Trapezium with two cracks - Evolution of the global error of the alignment according to the total number of
coefficients ika in the developments of auxiliary solutions.
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Figure 3: Trapezium with two cracks - Evolution of the conditioning of the algebraic system matrix according to the
total number of coefficient ika kept in the developments of auxiliary solutions.

Lastly, the figure 4 shows the plan view and the view in
perspective of the function u, while the iso value curves

of u, its first partial derivatives and the module of its
gradient are schematized in figure 5.

Figure 4: Trapezium with two cracks – Plan view and view in perspective of the function u.
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Figure 5: Trapezium with two cracks – iso value curves of the function u (blue) of its derivatives
x

u




(red),
y

u




(black) and the module of its gradient (magenta).

In this study, we consider the large singular finite
element method (LSFEM) using the integration on
interelements. The process can be conducted using the
boundary collocation method as discussed by Kolodziej
and Zielinsski [16]

LSFEM may be used to solve the eigenvalue problem
for Laplacian operator Desloux and Tolley [15]. A
numerical study of the phenomenon of eigenvalue
avoidance is developed by Betcke and Trefeten [20] that
reached the same or the best accuracy with a simpler
approach.

CONCLUSION

The study of the trapezium made of three equilateral
triangles with two cracks using the large finite elements
method provides satisfactory results in the entire domain
studied. The method takes the existence of singularities
into account by analytically seeking solutions near it;
which therefore allows getting, without further
formulation, derived magnitude. The convergence of the
method is exponential. The smallest global error
reaches 2.93×10-11. It is calculated using N=14. The
function u may therefore be calculated with at least 12
precise digits, while its first partial derivatives must be
calculated with at least 10 exact digits. We notice a
concentration of constraints at the ends of both cracks.
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