RESULTS ON AN INTEGRAL INEQUALITY OF THE OPIAL- TYPE

K. RAUF AND Y. O. ANTHONIO
(Received 19 October 2016; Revision Accepted 3 November 2016)

ABSTRACT

We obtain integral inequalities which are Opial-type inequalities, mainly by using Jensen's inequality for the case of convex function.

KEYWORDS: Integral inequalities, Opial's inequality, Jensen's inequality and convex functions. 2010 Subject Classification: 15A31.

INTRODUCTION

Opial ([8])established the following interesting integral inequality:
Let $x(t) \in C^{\prime}[0, b]$ be such $x(0)=x(b)=0$ and $x(t)>0$ in $(0, \mathrm{~b})$, then

$$
\begin{equation*}
\int_{a}^{b}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{b}{4} \int_{a}^{b}\left(x^{\prime}(t)\right)^{2} d t \tag{1}
\end{equation*}
$$

where $\frac{b}{4}$ in the best possible constant.

In 1967 Maroni [5] obtained a generalized Opial's inequality by using $H \ddot{\partial}$ lders inequality with indices μ and v. The result obtained is the following:

Theorem 1:

Let $\mathrm{p}(\mathrm{t})$ be positive and continuous on $[\tau, \alpha]$ with $\int_{\alpha}^{\tau} p^{1-\mu}(t) d t<\infty$, where $\mu>1$, $\mathrm{x}(\mathrm{t})$ be absolutely function on $[\alpha, \tau]$ and $x(0)=0$. Then, the following inequality holds.

$$
\begin{equation*}
\int_{\alpha}^{\tau}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{1}{2}\left(\int_{\alpha}^{\tau} p^{1-\mu}(t) d t\right)^{\frac{2}{\mu}}\left(\int_{\alpha}^{\tau} p(t)\left|x^{\prime}(t)\right|^{\nu} d t\right)^{\frac{2}{v}} \tag{2}
\end{equation*}
$$

where $\frac{1}{\mu}+\frac{1}{\nu}=1$. Equality holds in (2)iff $c \int_{\alpha}^{\tau} p^{1-\mu}(s) d s$.
K. Rauf, Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
Y.O. Anthonio, Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

Calvert [2] also established the following result:
Theorem 2: [2] Assume that
(i) $\quad \mathrm{x}(\mathrm{t})$ is absolutely continuous in $[\alpha, \tau]$ and $x(\alpha)=0$
(ii) $f(t)$ is continuous, complex-valued, defined in the range of $x(t)$ and for all real for t of the form $t(s)=\int_{\alpha}^{s}\left|x^{\prime}(u)\right| d u: f(|t|)$ for all t and $\mathrm{f}(\mathrm{t})$ is real $t>0$ and is increasing there,
(iii) $\mathrm{p}(\mathrm{t})$ is positive, continuous and $\int_{\alpha}^{\tau} p^{1-\mu}(t) d t<\infty$, where $\frac{1}{\mu}+\frac{1}{\nu}=1$. Then the following inequality holds.

$$
\begin{equation*}
\int_{\alpha}^{\tau}\left|f(x(t)) x^{\prime}(t)\right| d t \leq F\left[\left(\int_{\alpha}^{\tau} p^{1-\mu}(t) d t\right)^{\frac{1}{\mu}}\left(\int_{\alpha}^{\tau} p(t)\left|x^{\prime}(t)\right|^{\nu} d t\right)^{\frac{1}{v}}\right] \tag{3}
\end{equation*}
$$

where $F(t)=\int_{0}^{t} f(t) d s, t>0$. Equality holds in (3) iff $x(t)=\int_{\alpha}^{t} p^{1-\mu}(s) d s$.
The aim of this paper is to generalize Maroni and Calvert results using Jensen's inequality.

2. Some Adaptations of Jensen's inequalities :

Let φ be continuous and convex function and let $\mathrm{h}(\mathrm{s}, \mathrm{t})$ be a non negative function and λ be non decreasing function. Let $-\infty \leq \xi(t) \leq \eta(t)<\infty$ and suppose φ has a continuous inverse φ^{-1} (which is necessarily concave). Then,

$$
\begin{equation*}
\varphi^{-1}\left(\left|\frac{\int_{\xi(t)}^{\eta(t)} h(s, t) d \lambda(s)}{\int_{\xi(t)}^{\eta(t)} d \lambda(s)}\right| \leq\left(\frac{\int_{\xi(t)}^{\eta(t)}(\varphi)^{-1}(|h(s, t)|) d \lambda(s)}{\int_{\xi(t)}^{\eta(t)} d \lambda(s)}\right)\right. \tag{4}
\end{equation*}
$$

with the inequality reversed if φ is concave. The inequality (4) above is known as Jensen's inequality for convex function. Setting $\varphi(u)=u^{l-1}, \xi(t)=0$, and $\eta(t)=t$ in (4), then we obtain

$$
\begin{equation*}
(f(t))^{\zeta}=\left(f\left(\left|\frac{\int_{0}^{t} h(s, t) d \lambda(s)}{\int_{0}^{t} d \lambda(s)}\right|\right)\right)^{\frac{1}{\zeta}} \leq\left(\frac{\int_{0}^{t}(|h(s, t)|)^{\frac{1}{l}} d \lambda(s)}{\int_{0}^{t} d \lambda(s)}\right) \tag{5}
\end{equation*}
$$

3 MAIN RESULT:

Before stating our main result in this section, we shall need the following useful Lemma:

Lemma 1:

Let $x(t), \lambda(t)$ and $f(u)$ be absolutely continuous and non decreasing functions on [a,b] for $0 \leq a \leq b<\infty$ with $f(t)>0$. Let α, β, k and ε be real numbers such that $\delta, \geq 0, \varepsilon \geq 0$ and also Let $P(x)$, and $R(t)$ be non negative and measurable function on $[a, b]$ such that

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{1-\delta-\varepsilon} y(t)^{\delta} R(t)^{-1} \lambda^{\prime}(t)^{-1} y^{\prime}(t) . \tag{6}
\end{equation*}
$$

Then, the following inequality holds:

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \int_{a}^{b} y(t)^{\varepsilon} d y^{\prime}(t) . \tag{7}
\end{equation*}
$$

Proof:

Setting $h(s, t)=x^{\prime}(t) R(t)$ in (5), we have

$$
\begin{equation*}
(f(t))^{\varepsilon}=\left(f\left(\left|\frac{\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right|\right)\right)^{\frac{1}{\varepsilon}} \leq\left(\frac{\int_{0}^{t}\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{l}} d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right) \tag{8}
\end{equation*}
$$

By setting $f(\lambda(t))=\lambda(t)^{1-\delta}$ in (8) yeilds

$$
\begin{equation*}
\frac{f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right)}{\lambda(t)^{1-\delta}} \leq \frac{\left(\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{1-\delta}} d \lambda(t)\right)^{\varepsilon}}{\lambda(t)^{\varepsilon}} \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{1-\delta-\varepsilon}\left(\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{1-\delta}} d \lambda(t)\right)^{\varepsilon}=\lambda(t)^{1-\delta-\varepsilon} y(t)^{\varepsilon} \tag{10}
\end{equation*}
$$

Now let

$$
\begin{equation*}
y(t)=\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{1-\delta}} \lambda^{\prime}(t) \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
y^{\prime}(t)=f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{1-\delta}} \lambda^{\prime}(t) \tag{12}
\end{equation*}
$$

That is,

$$
\begin{equation*}
y^{\prime}(t)^{1-\delta}=f\left(\left|x^{\prime}(t) R(t)\right|\right) \lambda^{\prime}(t)^{1-\delta} \tag{13}
\end{equation*}
$$

Using the fact that $f(u)=u^{1-\delta}$ to have

$$
\begin{align*}
& y^{\prime}(t)^{1-\delta}=\left|x^{\prime}(t)\right|^{1-\delta} R(t)^{1-\delta} \lambda^{\prime}(t)^{1-\delta} \tag{14}\\
& \left|x^{\prime}(t)\right|=R(t)^{-1} \lambda^{\prime}(t)^{-1} y^{\prime}(t) \tag{15}
\end{align*}
$$

Combining both (10) and (15) to yeilds, inequality (6) and the proof is complete.

$$
\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{1-\delta-\varepsilon} y(t)^{\delta} R(t)^{-1} \lambda^{\prime}(t)^{-1} y^{\prime}(t)
$$

Remarks 1 :

By setting $f(u)=u^{1-\delta}, R(t)=P(t)^{-\frac{1}{k-1}}, \lambda^{\prime}(t)^{\frac{1}{k-1}}, 1-\delta=\varepsilon \quad$ in Lemma 1 yeilds

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}}\right| d t\right) \leq \lambda(t)^{1-\delta-\varepsilon} y(t)^{\varepsilon} \times P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} y^{\prime}(t) \tag{16}
\end{equation*}
$$

Integrating both sides of inequality(16) over $[a, b]$ with the respect to t, to get

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \int_{a}^{b} y(t)^{\varepsilon} y^{\prime}(t) d t \tag{17}
\end{equation*}
$$

That is,

$$
\begin{align*}
& \int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \int_{a}^{b} y(t)^{\varepsilon} d y^{\prime}(t) . \tag{18}\\
& \int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \frac{y(t)^{\varepsilon+1}}{\varepsilon+1} \tag{19}
\end{align*}
$$

Setting $\int_{0}^{t}\left|x^{\prime}(t)\right| d t=x(t)$ By using H \ddot{o} Iders inequality with α and β we obtain

$$
\begin{align*}
& \frac{1}{\varepsilon+1} y(b)^{\varepsilon+1}=\frac{1}{\varepsilon+1}\left(\int_{a}^{b}\left|x^{\prime}(t)\right| d t\right)^{\varepsilon+1}=\frac{1}{\varepsilon+1}\left(\int_{a}^{b} R^{\frac{-\varepsilon+1}{\alpha}}(t) R^{\frac{\varepsilon+1}{\beta}}\left|x^{\prime}(t)\right|(t) d t\right)^{\varepsilon+1} \\
& \leq \frac{1}{\varepsilon+1}\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{\varepsilon+1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{\varepsilon+1}{\beta}} \quad \ldots \tag{20}
\end{align*}
$$

Combining inequality (19) and (20) to obtain the Opial's Type inequality of the following

$$
\begin{equation*}
\int_{a}^{b} x^{\prime}(t) f(x(t)) d t \leq \frac{1}{\varepsilon+1}\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{\varepsilon+1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{\varepsilon+1}{\beta}} \tag{21}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) x(t)^{1-\delta}\right| d t \leq \frac{1}{\varepsilon+1}\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{\varepsilon+1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{\varepsilon+1}{\beta}} \tag{22}
\end{equation*}
$$

Remark 2:

For $\varepsilon=0$ in inequality (22) yeilds

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) x(t)^{1-\delta}\right| d t \leq\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{1}{\beta}} \tag{23}
\end{equation*}
$$

Putting $\varepsilon=1$, and $\delta=0$ in inequality (22) reduces to

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) x(t)\right| d t \leq \frac{1}{2}\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{2}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{2}{\beta}} \tag{24}
\end{equation*}
$$

which generalizes inequality (2).
If $\varepsilon=1$ and $\alpha=0$ in inequality (22) yeilds

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) x(t)\right| d t \leq \frac{1}{2}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{2}{\beta}} \tag{25}
\end{equation*}
$$

If $\varepsilon=0$ in inequality (22) becomes

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) x(t)^{1-\delta}\right| d t \leq\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{1}{\beta}} \tag{26}
\end{equation*}
$$

In inequality (18) if we set $1-\delta=\varepsilon$ becomes

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \int_{a}^{b} y(t)^{1-\delta} y^{\prime}(t) d t . \tag{27}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq \int_{a}^{b} f(y(t)) d y^{\prime}(t) \tag{28}
\end{equation*}
$$

Getting $\int_{0}^{t}\left|x^{\prime}(t)\right| d t=x(t)$

Using $\mathrm{H} \ddot{o}$ Ider's inequality with indices α and β, we have

$$
\begin{equation*}
\int_{a}^{b} x^{\prime}(t) d t=\int_{a}^{b} R^{-\frac{1}{\alpha}}(t) R^{\frac{1}{\beta}}\left|x^{\prime}(t)\right|(t) d t \leq\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{1}{\beta}} \tag{29}
\end{equation*}
$$

Combining (28) and (29) to obtain the following inequality

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t)\right| \times f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq f\left(\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{1}{\beta}}\right) \tag{30}
\end{equation*}
$$

that is, inequality that generalizes inequality (3)

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\prime}(t) f(x(t))\right| d t \leq f\left(\left(\int_{a}^{b} R^{1-\alpha}(t) d t\right)^{\frac{1}{\alpha}}\left(\int_{a}^{b} R(t)\left|x^{\prime}(t)\right|^{\beta} d t\right)^{\frac{1}{\beta}}\right) \tag{31}
\end{equation*}
$$

Similarly, we need the following Lemma to obtain a new Opial's type inequality using Jensen's inequality for the case of convex function.

Lemma 2 :

Let $x(t), \lambda(t), f(u), R(t), l, k$ and $o \geq 0$ and $\rho \geq 0$ be as in Lemma 1 such that

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq y^{\prime}(t) R(t)^{-1} \lambda^{\prime}(t)^{-1} y(t)^{\delta-1} \tag{32}
\end{equation*}
$$

Then, the following inequality holds:

$$
\begin{equation*}
\left|x^{\prime}(t)\right| f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq y(t)^{\delta-1} y^{\prime}(t) \tag{33}
\end{equation*}
$$

Proof:

The proof is similar to the proof of Lemma 1.
Since $f(u)=u^{\delta-1}$, inequality (8) becomes

$$
\begin{align*}
& \left(f\left(\left|\frac{\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right|\right)\right)^{\frac{1}{(\delta-1)}} \leq\left(\frac{\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{\delta-1}} d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right) \tag{34}\\
& f\left(\left|\frac{\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right|\right) \leq\left(\frac{\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{\delta-1}} d \lambda(t)}{\int_{0}^{t} d \lambda(t)}\right)^{\delta-1} \tag{35}
\end{align*}
$$

$$
\begin{align*}
& f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq \lambda(t)^{\delta-1+1-\delta}\left(\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{\delta-1}} d \lambda(t)\right)^{\delta-1} . \tag{36}\\
& f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq\left(\int_{0}^{t} f\left(\left|x^{\prime}(t) R(t)\right|\right)^{\frac{1}{\delta-1}} d \lambda(t)\right)^{\delta-1} . \tag{37}\\
& y^{\prime}(t)=\left|x^{\prime}(t)\right| R(t) \lambda^{\prime}(t) \tag{38}\\
& y^{\prime}(t) R(t)^{-1} \lambda^{\prime}(t)^{-1}=\left|x^{\prime}(t)\right| \tag{39}
\end{align*}
$$

Combining (37) and (39) to have

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) R(t) d \lambda(t)\right|\right) \leq y^{\prime}(t) R(t)^{-1} \lambda^{\prime}(t)^{-1} y(t)^{\delta-1} \tag{40}
\end{equation*}
$$

This completes the proof of the Lemma.
Consider all conditions of Remark 1

$$
\begin{align*}
& \left|x^{\prime}(t)\right| \times f\left(\left|\int_{0}^{t} x^{\prime}(t) P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}}\right|\right) \leq y^{\prime}(t) y(t)^{\delta-1} P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} y^{\prime}(t) \tag{41}\\
& \left|x^{\prime}(t)\right| f\left(\int_{0}^{t}\left|x^{\prime}(t)\right| d t\right) \leq y(t)^{\delta-1} y^{\prime}(t)
\end{align*}
$$

Then, putting $\int_{0}^{t}\left|x^{\prime}(t)\right| d t=x(t)$ and integrate both side of inequality above, over [a, b] with the respect to t , yeilds

$$
\begin{align*}
& \int_{a}^{b}\left|x^{\prime}(t) x(t)^{\delta-1}\right| d t \leq \int_{a}^{b} y(t)^{\delta-1} y^{\prime}(t) d t=\frac{1}{\delta} y(b)^{\delta} \tag{42}\\
& =\frac{1}{\delta}\left(\int_{a}^{b}\left|x^{\prime}(t)\right| P(t)^{-\frac{1}{\sigma}} P(t)^{\frac{1}{\sigma}} d t\right)^{\delta} \tag{43}\\
& =\frac{1}{\delta}\left(\int_{a}^{b} P(t)^{1-\rho} d t\right)^{\frac{\delta}{\rho}}\left(\int_{a}^{b}\left|x^{\prime}(t)\right| P(t)^{\frac{1}{\delta}} d t\right)^{\frac{\delta}{o}} . \tag{44}
\end{align*}
$$

We are able to generalized inequality (2), (3) and some remarks on Opial- type inequalities.

REFERENCES

Adeagbo-Shelkh, A. G and Imoru, C. O., 2006. An Integral Inequality of the Hardy's-Type. Kragujevac J. Math. 29, 57-61.

Calvert, J., 1967. Some generalization of Opial's Inequality, Pron. Amer. Math. Soc.18, 72-75.

Maroni, P. M., 1967. Surl'ingelite d'Opial-Bessack,C.R Aca. Sci. Paris A264, 62-64.

Fabulurin, O. O., Adeagbo-Shelkh, A. G and Anthonio, Y. O., 2010. On an inequality ralates to Opial, Octogon Mathematics Magazine, 18, No 1, 32-41.

Opial, Z., 1960. Surune int e^{\prime} galit e^{\prime}. Ann. Polon. Math. 8, 29-32.

