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ABSTRACT

Emstem s field equations fora Friedmann-Lamaitre Robertson—WaIker Universe filled with a dissipative fluid:
with a variable cosmological term A described by full Israel-Stewart theory are considered. General
solutions to the field equations for the flat case have been obtained. The solution cosresponds to the dust
free model where p = 0. It also admits the exponential solution for hubble parameter H which represent
the period of hyperinflation or superinflation where the energy density and the cosmological term grow
enormously. The temperature is regarded as a constant.

INTRODUCTION

The role played by viscosjty and the consequent dissipative mechanism in cosmology has been discussed
by many authors (Schweizer, 1988; Pavon et al, 1991, Trigner and Pavon, 1995). The expansion rate of the
universe is slowed down by the scalar field from exponential to the polynomial so that there is enough time
for the universe to complete the phase transition from the inflationary to the radiation dominated phase.
Dissipative effect such as viscosity are of enormous.important in the early stage of the evolution of the
“universe, particularly before the time of the nucleosynthesis (Gron, 1990).

A number of observations e.g. type |A supernovae, now compellingly ‘suggested that the universe
possesses a non zero cosmological term ( Krauss and Turner, 1995). The cosmological term represents
energy which is combined with the matter of the universe. For standard inflation, a universe with a
_cosmological term would expand faster with time because of the push from the cosmological term
(Croswell, 1994). The cosmological term could be a function of time in the spatially homogenous expanding
universe.

Any modei of the universe should yield a lifetime greater than that of the oldest objects in‘it, so it is difficult
for the Friedmann-Lamaitre Robertson-Walker (FLRW) models, without the cosmological term, to have an
- age of the universe greater than that of the oldest stars (Bagla et a/, 1996; Davies, 1996 and Fukuyama et
al, 1997).

The first solution of the cosmological models with time dependent G and A were obtained by Bertolami
(1986) which were extended by Abdussatar and Vishwakama (1997). Also Arbab (1997) found several
solutions similar to the ones obtained by Berman (1991) and Kalligas et al (1992), claiming that energy is
conserved. The solution was modified by Singh et a/'(1998), where they obtained the energy density pasa
decreasing function of time, with energy conservation.

Most of these investigations are based on Eckart theory (Hiscock and Solmonson, 1991, Beesham, 1993).
However, it is known that this theory is non causal and all of its equilibrium states are not stable. Together
with Prof. A, Beesham and Dr S.G. Ghosh, we have studied some solutions with variable A in Eckart theory
and in truncated theory, which has been submitted for publication in General Relativity and Gravitation
journat.

“In this work we examine the full causal theory which solves the previously mentioned problems. A genéral
- solution of an FLRW model is obtained and discussed, where k£ =0 and the cosmological term is a

function of the hubble parameter given by A =38H".

Also the expressions for the parameters A, p,7,¢ and I1 as function of time are obtained and discussed.
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a. Theoreticél consideration and calculations

' The time element of spatially flat Friedmanri-Lamaitre Robertson-Walker model takes the form
d,s?f‘; —df® + RE(1)(dx? +dy? +dz?) (1)

- The energy momentum tensor for a fluid with bulk viscosity is

T, = pu, + p;,, Py —~ A8, @

where p_is the energy density, u, is the four velocity, p,, is the effective non-équilibrium pressure, A is

_the cosmological term and 4, is the projection tensor defined by
h

uh

= g ah + ucru/f
and we are using units such that 824G =¢ =1.

The Einstein’s field equations wuth cosmological term derived from

Gah :‘Tah
are
p=3H"-A 3)
and
. 1

‘H'—'6*,0~~(P+H)+— €

where
u R
R .

is the hubble parameter and the dot denotes Ehe derlvatrve with respect to time. The conservation equation
of momentum yields the non independent equation

;7 = ¥3(p+ pIDH (5)

,where I1 is the bulk viscous pressure. We assume a linear barotropic equation of state as def|nr>d by
Cavao et al (1992)

p=@F-lp ) 6)

where y ia a constant within the range 1<y < 7

N

b. Equation of state

Equations of state of some thermodynamical variables can be derived from kinetic theory (Stewart, 1971;
Caderni and Fabri, 1977). To obtained detailed equations of state, we compare one component fluid in
general relativity and in Newtonian theory as indicated by Eliis and Madsen (1991). There are some
equations of state in the form of Z = Z(p,v) where Z'is the specific internal energy density of the fluid.
‘Mason and Kgathi (1991) have investigated the dependence of n and specific entropy S for a non-
dissipative relativistic gas in collision-dominated equilibrium, where S = S(p,n) and all the variables are

defined by using the first law of thermodynamics.
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It should be noted that S is not constant along the fluid particle world line, and not throughout the fluid in

general. If S is the same constant on each world line i.e. =0 and S, =0, then the fluid is called
isentropic. The 'relationship between the thermodynamic scalar n, p,p,s and T is given by Gibb’s equation

Tds = d(ﬁ] + pd(l] ®)
‘ : n n

The equation of state depends on particular physical properties of a fluid which are deduced through‘
microscopic physics (kinetic theory). The Gibb’s equation shows that in general two thermodynamlc scalars
are needed as independent variables. The Gibb’s equation integrability condition

ST =8,nT
becomes
nL o+ ) Lor®
on 0 op

By taking T =T (n, p) and following the conservation law of energy and number density, it results in the
equation of state for pressure and temperature :

- )

LY 50 ) )
T op
c. Causal Bulk viscosity in cosmology

The energy entropy four-flux is given by

¢ = gy - AL . (10)
2ET

where s is a specific entropy, 7 > 0 is the relaxation time for bulk viscosity stress, £ 2 0 is the coefficient of
bulk viscosity, 7 > ( is the temperature and N is the number of flux given by equation

‘ N = nu"
The divergence of the four flux yields
AT w11 -
S =8 N +sN% =t~ — u : (1)
: g fT 2. fT 3

F'+rﬂ=—g§[z’—%qtgl{+-~——F (12)

For 7 =0 represents the standard Eckart theory equation of relativistic irreversible thermodynamics. This
thecry has causality violation and pathology of unstable equilibrium states. At ¢ = 0 we have extended
Israel-Stewart equation (truncated theory equation). The difference between the Eckart and extended
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Israel-Stewart theory equations is that the first is a simple algebraic equation and the latter is a differential
evolution equation. The non-truncated Israel-Stewart transport equation is formed when. & = 1. This eqution
is totally different from the first two equattons because it accommodates the influence of the coefficient of
bulk viscosity (£) and temperature (7') in a fluid.

|

Most authors use these ad hoc equatlons to define the relaxatmn time and the coefﬂc&ent of bulk viscosity:

§=ap”
and
o

By considering the same definition in full theory we obtain the complex value of the coefficient of bulk
-viscosity. According to Coley ef al (1997), the relaxation_time and the coefficient of bulk vnscossty are
consndered as proportional to power p. By defmlng the denS|ty parameter as -

z= 13
3H® {13

Then the equations for 7 and £ in terms of the density parameter are

V= pHZ? (14)
and
—fi = 3(121" ’ (15)

Following Arbab (1997); (1998) and Smgh et. aF(199§) ‘the variation of the cosmolagical term (A) as the
function of Hubble parameter H takes the form of

A=3pH" - (16)
v\:/he_re‘ ﬂ;ﬁ 0 is a constant. From equation (3), (4), (6) and (16), the bulk viscosity pressure is‘gi'ven by
I =211-3(y - A4’ V)

Equations (3), (4), (5),b (8), (9), (12), (13), (14), (15) and (16) result in the evolution equation for H , where:
e=1 o

[6;/(1—-,8)+3+3m(1+y)+%y(l—ﬂ{biz+l—2mj+2b(1*ﬁ)”}f.{H :
) ,3)[ ~—my+1]HH3 7[(7 11- g &

2

-—.[})1'—2‘.+1—2’mj%+6_(7—1{1;’8 jH H—;—}( -1 (-p)H H

+2H +B7(1 - BYm+y)+3b7(L- BY " ~9ab(1 - /3)”*"'}1{3

+ 2507 -1 5 JH* - S0 Y-8 =0 as)
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'According to Maartens (1995), the equation in the form of (18) is consistent with exponential inflation with
A=0,8%1 and H =const. The above equation gives the infiationary solution if f=1. f m=1 we

qbtain p=0,6=0 and 7 = 0 which corresponds to perfect fluid solution. /

.d. - General cosmological solution

in full causal theory, equation (18) admits the exponential solution for hubble factor H in the form of

H = He™ (19)
which leads to ~

H = He" and H = o*Hye™ (20) ;
where | is the constant. This solution corresponds to the hyperinflation period which was. obtained by

Barrow (1988). It was also obtaine by Arbab (1997) in the Bianchi | mode! with variable cosmological term
(A) and G, where the density parameter remains constant. By usmg equations (18), (19) and (20) we

obtain

oy @ B)+3+3mly + Vo™ + B y(1- ,3)(}} +1- Zm] +2(1— lg)ﬁ}aeuu
+9(r~1)1- ﬂ{% - ﬁv‘ ~mly + l)}ae“f |
£22 (- 100 - pl e [6(7 )(m--“mJ ]ae

dar

+ 27( BXm +y)+3by(1- )" _9ab(1_ﬁ,)p+,,,}aa

|5 ~1)2(1-ﬁ)0?2f37-r(7 -.lxumz[g;-m]}w

+ 2—‘—(2%—+1-—2m]:|e +——— 71 ﬂ)’(y-1)é7w=o S @2n

L.

From equat:on (6) and equation (21) we obtain seven . independent equatlons with 7 unknowns
(a, B,7.a,b, mand p)

p=lr Jp

2—(7)13“_2”1}:0

Gy(l—ﬂ)+3+3m(7H)*i?’(l“'/5{“%+1_—2m)+2b(1—.ﬁ)” =
9y —1)1- ﬂ){ m(},ﬂ)}

bzr(r-l)( -pYa —1)2( pla’ o2 (y 1Xi-8) (——ny)o
6@—1)(-—,~—mja [ y(i,—ﬁxm+y)+sby<1—ﬂ)ﬂ+* ~9us- gy | =0
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81 " 3 ‘7&,’
BB =0

By solving these equations we obtain
’ a+0
m=2x+1
o]
V2m+1

14+ 6m

ﬂ =

p =

: V= S
_@b+3ma3)i-p)™"

6b

—_— O O

where x e R

Since p =0 the solution represents a pressure free model (dust) which implies that
p = poe’

By using equations (3), (4), (15), (16) and (17), we can express the cdsmological term (A), the density
parameter (p) the bulk viscous pressure (H) the coefflc:ent of the bulk VlSCOSlty &) and the relaxation
time () as the function of time. -

P

\ = 3fH,’¢*™
=3 ( - ﬁ)Ho e
I1=2 - Hoae® =3(1- B)H,'¢™
- E=3a(l- p)’" H,e"
1

o,

The cosmological term, the coefﬂment of the bulk wscosﬂy stress and the density parameter increases with
time. This indicates that the age of the universe can be deduced from these three components. In this
model we can regard the value of A as the measure of the age of the stars.

T =

DISCUSSION AND CONCLUSION

In this work we solved the Einstein’s equations for the viscous flat FRLW universe with variable
cosmological term by using full causal theory. The exponential solution for the hubble parameters are
obtained which correspond to hyperinflation periods. During -this epoch, the density parameter, the
cosmological term and the coefficient of the bulk viscosity grow very enormously with "time, while the

temperature is constant. The.value z — 0 as the value of time (¢) increases. The cosmological term

becomes zero when g — 0, which gives the perfect fluid solution. From equation (9), 7 =( which

~confirms that the temperature is constant and independent of time. The implication is that the model. is
inline with the Boyle’s law in kinetic theory According to the solution the temperature is not the function of
time. This solution is totally different fror the solutions obtained by various authors.

1 . . . . |
For_ m > —5, the. value of B. form an mcreasmg_ anthmetlc sequence and the values of & and a form a
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- decreasing arithmetic sequence, where p and y remain constant. As a resuit the value of the
cosmological term constantly increases with the value of B, while the energy density and the coefficient of
the bulk viscosity approach —w. The relaxation time consfantly increases when the value of b decreases
at a constant rate. This solution is not acceptable because the value of the coefficient of bulk viscosity (;)
must be positive (cf > O). So it violates the entropy equation where the coefficient of the bulk viscosity is '
real and positive. ‘

N

1
For m< —5 the value of f decreases in a arithmetic sequence, while the value of « and b are non-real.

This shows that the term has an impact on the bulk wscos:ty The :n?(pf catlon is that this cosmological term
is not constant, and it mostly depends on the entropy equation as well s the value of the relaxation time.
and the coefficient of the bulk viscosity.

»
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