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ABSTRACT

An investigation of the confined transmission resonances in multiple quantum wells has been
carried out using modified envelope function approximation including the [6, (7, and [8 host bands. The
theoretical results are compared with the results of experimental excitation spectroscopy. Both symmetric
and anti-symmetric confined levels have been observed. While the first symmetric confined level exists for
all values of the well-width, all others disappear for well-width less than 5.0nm.

INTRODUCTION

The possibilities of growing high Heterostructures with the help of such crystal growth techniques like
molecular bean epitaxy (MBE) and matal organic chemical vapour deposition have offered important
opportunity for both the development of novel devices and also for the advancement of fundamental solid
state science. When the thickness of the layers of these structures is smaller than the de Broglie
wavelength (i.e. L, ~N) of the electronic particles (i.e. electrons and holes) confined in the Heterostructures,
the properties of the structure are dominated by quantum size effects (QSE) (Adelabu 1996a). The
electronic states from the two-dimensionai (2D) sub-bands of the structures with the corresponding rise in
energy due to the confinement depend primarily on the layer thickness, the particle effective mass, and the -
depth of the potential wells (Dingle et al 1974, Dingle 1975). Thus, studies of the electronic and optical
properties of these super structures can provide information on most of the fundamental characteristics of
the semiconductor heterojuntions.

* Most of these investigations have focused on properties associated with the direct band — gap (r).
This paper reports on the results of investigation on the confined transmission resonances in MQW. A
modified enveloped function approximation of Bastard (1982, 1984) including [ 6, [ 7, and [ 8 host bands has
been used. n addition to the theoretical work the results of excitation spectroscopy experiment on these
structures are presented. One of the observed lines corresponds to an optical transition which involves a
light hole state.

THEORETICAL CONSIDERATIONS AND CALCULATIONS.

Most of the theoretical investigations like those by Bastard (1981, 1982, 1984) and by White and
~Sham (1981) have been devoted to the calculation of the dispersion relations along the growth axis.
Unfortunately the properties of the heterostriictures wave function that are of major reference when
evaluating the strength and shape of tne absorption and recombination spectra have received little
attention.

Assuming perfect lattice matching between the host materials, a superlattice crystal dispiays two
periodicities: the natural periodicity (d,) and the artificial periodicity (d). Usually, the situation of concern is
the case of d >> d,. The Superiattice (SL) and multiple quantum well (MQW) electronic states have been
calculated by such approximations as the tight binding approximation (TBA) by Schulman and Chang-
{1985) and the envelope Function Approximation (EFA) by Bastard (1981,1982, 1984) and also by Bastard
et al (1984). Each of these approximations has its own merits and demerits. The TBA focuses the attention
on atomic-like properties (i.e. at the d, scale) and builds the SL and MQW states from host atomic site to
host atomic sites. The calculations are exact in essence but to be accurate, they.require more elaborate
computational efforts. On the other hand, the envelope function approximation takes the natural periodicity
do, into account by means of an effective — mass approximation with the superperiodicity, d, acting upon the
envelope functions which are slowly varying at the scale of d, In the envelope function scheme, soire
microscopic information (i.e. at the scale of d,) is lost. In particular, the details of the interfaces between
consecutive layers and the exact chemijcal nature of actual layers, which are the chemical elements.of the
two terminating planes of a-given layer are left undefined. In this coarse-gramned description, which is
reasonablée only for sufficiently thick host layers with each layer being an effective medium of only some
gaps and interband matrix elements are kaown. The electronic dynamic in the SL and MQW is described
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Fig. 1. Schematics of the assumed structure

(Bastard et al 1984) by the envelope functions which are eigenstates of an effective Hamiltonian. The only
microscopic information which has survived in the envelope function scheme is embodied into a few
parameters (in practice Tgaps, [spin — orbit and Kane matrix element) which are known from experiments
on bulk materials. The EFA (Bastard et al 1984) is in excellent agreement with experiment for both the type
I and the type Il SL and MQW systems (Adelabu 1996a) as long as the experiments have been performed
on crystals with d>>d, for which the interface planes represent a relatively minor detail compare with the
“bulk” of each host layers.

For the study here, a binary SL and MQW obtained by alternatively stacking layers of A material
(thickness L,), and layers of B materials (thickness L) (Fig. 1.) is considered. Here, the same layers (e.g.
the A layers) are quantum wells for both the conduction and valence states. This situation is met within the
so called type | structures such as the GaAs/AlGaAs and GalnAs/AllnAs systems. In this case the
corresponding wave functions are mostly localized in the A layers. _

In this work, the basic assumptions are that the A and B materials are direct-gap materials, typically
-V and 11-VI compounds. Furthermore, it is assumed that only the usual {6, [ 7 and [ 8 host band edges
significantly contribute to the SL and MQW wave function. The r point-periodic parts of the host Bloch
functions are assumed identical in the A and B layers. Any inversion asymmetry effect associated with the
Zincblende lattice is neglected. All the above assumptions are adequate since the object is to calculate SL
and MQW states which are close enough from the host [ -points.

In the considerations, just like Bastard et al (1984), a symmetric double well is assumed. Here there
are two wells of material A, say (thickness L) clad by an infinitely extended barrier of material B and
separated by a bartier of material B of thickness Lg. To exploit the symmetry of the structure, the mid- point

of the central barrier is taken as the origin. Since the A and B layers are Ill-IV compounds previous. -

analyses (Bastard 1981, White and Sham 1981) can be drawn upon which have shown (Adelabu 1993) -
how to include band discontinuities at the A-B interfaces in the Kane model (Kane 1957) for the | related
bound SL and MQW states. The envelope-function scheme which takes into account band non-parabolicity,
rests ultimately on a reasonable approximation that the [ 6, | 7 and [ 8 period parts of the Bloch functions are
the same in both materials A and B. The matrix element:

P=(l/m,<s/p,/x>

Is constant throughout the whole structure. In addition o p, the parameters of the model are the band ga‘p.s ,
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(Ega and Egs), and the fspin — orbit energies (Aa and Ag) of the host materials.

For zero wave vector, K, in the layer planes (where the onset of interband absorption occurs), the
energy E of a carrier is related to the wave vector K, and Kg in each layer by:

E(E+Eg)(E+EgrtAn)= PRICA(E+Equ+2043) (D)
(E' Vs) (E" Vs+EgB) (A' V5+EgB+AEB)= chszz(E" Vs+EgB+2AB/3) ree (2)

where V; is the shift in'the [6 edge when going from material A and B. ;I‘/he bottom of the [6 band of

material A is taken as the energy Zero.

By considering the appropriate boundary conditions (Bastard 1981, White and Sham 1981) at the A-
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" Fig. 2. Decoupling of the [ 8 heavy hote from the light hole at K = 0.
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B interfaces the dispersion relation for the SL an¢ MQW system is given by:

2Cosk gl (1 - 1) sin Kal, + (1 + 1) sin Kl exp(-kgil3) = 0 ..(3)
¢ ¢ ¢ 4
T = Kay/Ka(2/E-Vs+Eg + 1/E-Vs + Eg + Ag)(2/E+Ea + 1/E+Es+An)” ..(4)

The minus sign refers to the symmetric (S,) states with respect to Z=0 while the plus sign refers to the anti

symmetric (As,) states.

T(E) = {1+1/4(5-1/0)2sin’kal2[2Coskal,Coskals-(0-1/0)sinkals]”
Where Kg replaces Kgy of equation (3) and al‘l other symbols are as have already been defined.
If L3=0, and bound structure effects are not considered ({ = kakg), the familiar expression for
a single well with width L,, = 2[; is obtained.
Sim‘ilarly,

Ka (E)l> = pn, p is an integer ... (5)
and

] |
Cosk a(E)l; Cosk 5 (E)ls— 5 (i) + é(E)SinkA(E)IZSinkB(E) L;=0 ..(6)

: The above situations refer to the electrons and light holes. As for the |8 heavy holes, they are totally
decoupled (Bastard 1981, White and Sham 1981) from the light particle state since Ki=0 (Fig. 2). In the
energy range of interest, the heavy hole bands are parabolic with masses ma and mg in the respective host
layers. The same analysis that led to equations (3) to (6) are repeated for the heavy hole as was done by
Bastard et al (1984). The same equations are obtained except that:

0= (kAmB) / (mAkB) (73)
and

E=-Ea— (Kh)/2my = Vs- Eg- (1K’ 5)/2mpg (7b)

RESULTS AND DISCUSSION

Figs. (3) and (4) present typical results. For the bound states, Kg in eqn(2) is imaginary. This
corresponds to an evanescent state in the barrier. For this, one simply lets Kg = iKg in the equation to
. obtain the appropriate dispersion relations. Since the system has minor symmetry with respect to Z=0, the

bound state envelope functions are even or odd in Z. They decay like exp(-Kgs/z) at large Izl. The
* symmetric (S,) (solid line) and the antisymetric (As,) broken line levels, (where n=1,2,3,... are integers) are
~ degenerate for an infinitely-thick barrier. The first symmetric confined level S, exists for all values of the well
- — width L, while all others disappear for well width less than 5nm. The first antisymmetric level, AS; will be
. bound, for all barrier — width Ls, if the single well of width 2L, admits two bound levels. This according to
- equations (1) to (3) is the case for electrons but not for light holes in the system with L, = 4. 5nm The
" dissymmetry is due to the relative magnitude of the valence and conduction barriers, the forme{ being much

" smaller than the latter in this system.
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Fig. 3. Resulits for the levels in the electrons Fig. 4 Results for the levels in the holes.

The continuum levels are each twice degenerate, corresponding to a wave traveling either towards
increasing Z or towards decreasing 7. Suppose a wave coming from Z= o is impinging on the double well
structure. At X = -Ly L/ 2, it is partly transmitted and partly reflected. Inside the structure, similar reflection
~ transmission phenomena occur at each interface. Finally, a part of incident wave is transmitted by the
entire double well structure. '

A characteristic feature of egn (4) present also in the single quantum well case is that T(E) goes to
zero at the onset of the continuum in the general case, which means that the carrier actually avoids the
quantum well under this condition. This repulsion disappears deep in the continuum. However, T(E) may
actually equal unity for some discrete emerqmae, These energies are solutions of egn (4).

The solutions of eqns. (5) and (6) are scattering resonances. Equivalently they may be viewed as
virtual bound states (%\(i:}!&hu 18996b) characterized by an accumulation of electron wave function inside
double well structure. Eqn. (5) is the same as that for single wells of width 1,. Were the basis |, and I;

infinitely repeated, eqn. (6) would be the equation of a SL and MQW state with wave Vector 72 I+ 13
(Bastard 1981). The double well structure exhibits resonances which are either characteristic of single wells
or are the precursors of 51 and MQW bands. When £ (1 V, (or Vi~ Eyor V- Ep Ap) and the
conditions in eqns. {‘f:‘») and (8) aie fulfilled, the virtual bound levels match the true bound level determined
by eqn. (3). The delocalized resonance, of egn (6) converges towards the anti-symmetric bound states As,
atE =V, (V, -~ Eyor V — Iy - Ap) whereas the isolated resonances of eqn (5) converge towards the

symmetric states S, in the same limit. When a resonant level approaches Vior(V, — EgorV,—_Eg- A 8)
the transmission ceases to be low and for energies within the resonance width the probability of being in
the well is significantly increased over the value found at the same energy in the non-resonant situation.
The extended states, e, those: states with energy E larger than V, the height of the confining
barrier, have heen marginally neglected. However, it is of interest to understand how a bound state evolves
when its confinemeant energy oxceeds Vy,. Moreover, low-lying barrier states (E = V,) may play a significant
role in carrier capture by a quantum well. This has been made possible by the high quality of the present
day guanturn well structur . the existence of sharp interfaces) which leads to pronounced oscillatory
pattern of the electron tre x,)rrls';‘on coefficients across the quantum wells. Under the condition of
constructive interference, the electror is captured by the quantum well for a reasonably long time. During
tnis capture time the carrier can easily relax towards the true bound states where rad:atlve recombination
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becomes efficient. This resonant capture can alternatively be viewed as virtual bound states. When the
parameters of the structure (V, and the well-width thickness L,) are varied, the bound levels evolve
continuously towards virtual bound states (Bastard et al 1984).

CONCLUSION

Bound and virtual bound states in SL and MQW using the double coupled quantum well structures
arrangements have been considered. Based on the results of the calculations, it is concluded that, under’
certain circumstances virtual bound states do not participate in optical transmission within the type | SL and
MQW structures. :
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