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ABSTRACT

A methoda s developed for the deduction of a transition metal ion potential
from a knowledge of the phase-shift. The method used is based on the distorted
plane - wave scattering approximation for the deduction of non.singular potentials
from scattering phase shifts in an invegse scattering approach. The resulting
electron - 1on potential obtained is a finite Dirichlet series sum of short-range
exponential® functions. The Fourier transfort of the potential is obtained for
applications to the transition metals.
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. INFRODUCTION

In the usual description of the electron structurc of transition metals one considers the
valence band as arising from the hybridization of a relatively narrow d-band with the broad
conduction s-band. This characteristic feature can be found in all the band structure calcula-
tions of the transition metals, where, as a result of this s-d hybridization, a gap in the energy
band is created at points of intersection of the s and d bands. The effect of this hybridization
between a sharp.d-level and the s-band is the formation of a virtual bound state giving rise to a
resonance phenomenon well above the bound states with a | = 2 phase-shift of the form.

n, =gt W2
E-E, e !

Here the transition metgl electror band structures are characterized by two
parameters namely the width W of the d - band which is related to the lifetime h/w of the virtual
bound d state at a given ionic site, and the energy E  which specifies the location of the d-band
with refaticn to the bottom of the s-p conduction band. Since for transition metals the resonant
torm of phase shift in equation (1) above is well established, the purpose of the present paper
is to derive the ionic potential for transition metals in an inverse - scattering approach from our
knowtedge of the d - phase shift. Once this can be done, we can take a fourier transform of such’
a potential obtained for the purposes of calculating a host of transition metal properties.

A variety of mathematical methods have been developed, Gel’ fand and Levitan (1955),
whereby in principle potentials can be deduced from a knowledge of particle phase-shift

(r/w). I'or the present analysis, the distorted plane-wave method due to Swan (1967) was used

for the deduction of potentials from a knowledge of the scattering phase shifts. This method
has the sdvantage that it is readily amenable to numerical calculations with- a minium of
computational labour. By choosing a Dirichlet series expansion of the potential, one can avoid
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the actual solution of the integral equation as in the Gel*fand and Levitan or the Marchenlco
formalisms Which eonverge rather slowly and are very sensitive numerically to small changes
in the input data.

AN CUTLINE OF THE THEORETICAL MODEL,

A brief description of the imporiant steps "1 five Polorted (Jdane veeve nadwas for
constructing non simgular potentiaiy from a knowiedg: of scattering phase shift is given.
Further details can be fopnd ina series of articles by Swan and by Swan and Peace (19606). The

scattering data in the form of the phase-shift T],(k) ars refated to the potential ul wmitereat 'V (r)
by means of an integral equation of the form )

Sin !*,ék) S (l/lc)(:foU (r) FL (k,r} . qlékﬁr) dr e 2
where the wave [unction WL(k,r) is given by \uék,r) = FL(k,r)
with aisymptotic forms
‘|’L(l' """""" »00) = Sin(kr~%Ix - wln2kr + nL(k) R 3
q/t_(r>>2>1'{s§') = FL(K,r) cos nL(k) + GL(kvr) Sin nék) ------------ 4
and s O T L S e 5

Here F, (7)) and GL (k,r) are the regular and irregul;u' coulomb wave functions respectively.
and G¢ (k) is the distorted irregular coulomb wave function. Rsisthe parametric range of the
© potential V (r) of interest with

U (r) = 2m V()
T

[ve k4 “
2k, and 8 = 2mZe* rmmm 6

.2

and we are here concerned with the case of an electron of mass m and charge -e being scattered
by an ionic potential V() of charge + Ze.

By substituting the wave function of equation (3 into the integral equation (2), we obtair
'the relationship

B
tg n(k) = leg' mmee 7
2% .
where

B, =*(1/k)f ulr) Fi(k,r)dr; ---- 8
0
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and

B, =~<1)[ U(r) FE e, r) G2 (k,rydr; --- 9
a

Now by using series expansion of
F, (k.r) and G (k.r) in terms of the radial wave functions E,, (r)

and H,(r) for Columbic type of potentials in the form

F (k, 1) =C(kr)*"*¢p,=C,(k, )" Y E,(r)k™, --10
m=0

im

¥, (k,r) = Y H (r)k™n -~7- 11
m-~q

and
6 (k, r) =1 (21+1) €, (kx)*] Loy, (k, 1) + (kr) '
(kr. In33kr+q) ¢  ~——--=-=- 12

It is possible'td cast equation (8) into the form

ol
e =0

A

N N 2wl
Y Tiwo * Y, Tumk® + kBl 4 P(0) (O ()T Y 2
m peIw 5=1
+ K*r(a) [R.m-n + K* P (a)S,,] k¥ --- 13
where
Ry, = ~fr21*2U(r) K,(rydre,  ------ 14
Q
Tyup == fr“’il exp (-y,r) 9,(0,r)Utr) L,,(r)dr ---15
0
Syn =_fo°°r<2“2>U(I)Km(zmz Bprdr, --- - 16
m
K (r) =Y B (r) Eg ()  ~-—==- (17)
n=0
m
le(r) = E Eln(r) Hm)au(r) ——————— (18)
n=0

with g (k,r) the potential form factor having the asymptotic limits

9‘ \r—oo) = rzt*l’ gl (r»Rq) = 1’ g‘ (r-—;oo) = 1 —— 19
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For charged particle scattering, we also have
that
o ney np () 0
“ T T ) 2a (21+1) (exp l2ma] -1)
2t+1 ot o T 2en?y e 2
_ m oo 20 g IT (% +a”) 21
P‘(a) (21+1) ! =l
- 5
(.)l (a) = Z "“‘“‘"i"“*';,’ + 11(&) ~~~~~~ 22

S=1 8%+

[f we now substitute into equation (14) a general shape - dependent phase - shift
scattering formulae of the form

241
Clxain ctgn, (k) + (2v+1) HE# P ()@, («) - Z *:é. + K#r (o)
551
il
o S
n

We obtain a sot of simultancous equations in the rorm

m

— 2 A ) — - / - P 8 . .Y A T R 3
(-1 (dno + ) R, =0, (for 0 <ms N) 25
i
with
i' N m
- FR Y AR . . e PR T« T
uun - (2'L+'L) iflmo * 5: (I 6m(} Gl[) Zl,m~p,m t Z ﬁl,nr--n S’in b
Pl =0

To solve this set of simultaneous equations for the potential U(r) of interest we
use a Dirichlet series expansion of short-range type exponential potentials in the
form.

N
Ulr) =3 B, exp|-r/mr) --=--=- 27

m=1

Equation 25 then begomes linear in the coefficients B, (m = 1,2,3... N) but
nonlinear in the potential parametric range R,. With an appropriate choice of this
range parameter R,, we can then solve a set of linear equatibn (25) to obtain the
potential coefficient.B,,.

APPLICATION TO TRANSITION METAL RESONANCE PHASE-SHIFTS.
In this section, how to apply the above method to our particular case of transition
metal phase shifts is outlined. Ziman (1965) and Heine (1967) have shown
formally from the augmented plane wave (APW) and the KKRZ methods that one
can get the transition metal type of band structure by using a d-resonant phase
shift of the form in equation (1).

- W2
“TMh-2 E-E,
By using »zw the K-dependent form of resonance width as given by Friedel (1963)

,{“'24 K“,l +1
L -

[1.3.5. .- )P, remnn 28
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We cau o the wransition metal resonance phase shift of equation (1) into the ferm
R WM WCrgn, = [1.3.5. . Q2l- DPP(K*- Ed); ............. 20

which 15 g truncated form of the shape-dependent scattering formular (24) with only two
forms on the right-hand summation. Thug all the experimental scattering information
required for our charged particle scattering problem is now contained in our truncated
equation (29} tnstead of the more complicated form of equation (24) of the general theory.
It also fullows that in this simpler case, usually referred to in the literature as the shape-
in dependent approximation, the set of simultancous equation (25) to be solved reduee

only two svith O m2 and the corresponding Dirichlet series in equatlon (27) s also
truncated (3 two terms only:

U('ﬂ}ﬂ exp [-t/R, + B, exp-1/2Rs] e 20

FOURIER TRANSFORM OF THE TRANSITION POTENTIAL

For solid - stuly applications, since the potential obtained from an inverse scattering
approach is only valid in the parametric range, Rs is usually taken to be of the order
of the atoinie sphere radius, Heine (1980), we therefore add a coulombic tail beyond Rs

for self - oo suistency:
U (r) = - Z Bm exp |_ -r/m R{].k for r < I{S
. m=1
- Ze? for r>RS  cecomemen 31
T

In a loeal approximation, we calculate the plane-wave matrix element of this potential

W
|38

i = (K| VOIK +a) = I AT L0 —

This is the fourier transform of our electron-ion potential and is evaluated to get

&fmk [B,] . [2B,] AmZe?

V ”
‘@ Zm (L) [1+g2R2] - (1+aq?RZ) Qg*

our new transition metal model potential can be screened linearly in- the usual
manner as follows

velq = Vi@ ok AmR [B,] . [2B,]
T 7@ T m Qeld) (grgirI? (1+47RD)*
amze® . 34
Qge(q)

where E(q) is the Lindhard dielectric function given by

2 - 2 +
e(q) = 1 + 2m6 KF + M~ 1 ] M ————35
nhiq? 2ky ~ g
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In the limit of q ----> 0, we require that

lim V(g) -2 .
) PRSO. A S E ______ [, \56
70 e(q) 3 ,
with
ame’K,
€(q) = ———>~  —------ 37
wheqg*
and this requirement imposes the restriction that
B +2B, =0, . - . e 38

Furthermore, one can use the fact that reliable interpolation of the screened
potential V{(q) pass usually through V(1) and V(200) within 0.01 Ryd, Heine
(1969). Thus we can set V¥{(q) = O at about ¢/2K; = 0.75 and we get a usetul
approximation.

Talte 1 - Relevant Parameters for the deduction of transition metal ion Potential

ﬁi’ ransition X
Metals K, Q Z R, E, W
| Cu 0.72 29.4 ] 1.14 0.31 0.21
Ag 0.64 115.4 1 1.59 0.18 0.24
Al 0.64 114.6 I 1.59 0.38 0.39
Sc 0.81 168.7 3 1.81 0.52 0.38
i 1.16 223.1 4 1.99 0.50 0.49
T 0.99 119.0 4 1.81 |1 0.7 0.45
Zr 0.91 159.0 4 1.99 0.53 0.62
Hf 0.92 150.2 5 1.75 0.64 0.70
v 1.16 93.9 5 1.49 0.54 0.50
‘Nb 1.07 121.3 5 1.62 0.54 - 0.72
Ta 1.07 121.3 3 1.62 0.67 0.82
Cr 1.03 80.6 € 1.42 0.59 0.48
Mo 1.19 105.5 6 1,53 0.53 .0.73
w 1.18 106.5 2 1.56 0.70 0.84
Mn 0.70 81.9 7 1.43 0.58 0.4]
Fe 1.04 79.8 4 1.41 0.56 0.35
Co 0.93 749 | 3 1.39 0.54 0.32
Rh 0.93 92.6 4 1.49 0.37 0.51
Ni 0.93 73.6 2 1.38 0.51 0.28
Pd 0.84 99.3 2 1.52 0.33 0.40
’@ 0.84 101.6 2 1.53 0.48 0.58 )

All quantities are in atomic unit (withh =m = e= 1.) Rsis taken as the atomic sphere radius

A
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approxiniation

; B ) 2B2 . = .,,W,JEHZ—&E___...

T+ (LS R TIH(ISK R h(1.5k)R}
\ !

Equaticn (38) and (39) are useful as they give an order of magnitude estimate of our potential
parameters 13, and B, for a given parametric range R_.

Discussion and Conclusions

' In table 1, I give some values of the relevant parameters for the deduciion of these
transition metal atom potentials. The values of these parameters have been faken from Harrison
(1980) and Animalu (1973), as shown in the table. Applications of the prescit method will be
most [{ruitful for metals such as the transition metals which are very sensitive (o such
approxinm:tens in which self - consistency exchange treatment is used. This is due to the fact
that all nur experimental scattering information reqiiired for our problom is expected to be
contpite:d in our knowledge of the phase-shift as a function of energy. Calculation based on this
form of model potential are being carried out of transition mectals to obtain phonon
dispersio: rziations, liquid metal resistivity, optical properties otc.

f - st be understood that, while the distorted plane-wave method of inverse scattering
is weth mawnand has been successfully used in nuclear physics, itis its application here in solid
state nhiysics to derived ionic potentials for transition metals that is of major interest., The only
asstmHien we make in carrying over this analysis to a potential in the solid is theability to sum
over the lattice, a set of non overlapping spherically symmetric supperimposable potentials.
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