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ABSTRACT
An algorithm for generating the system matrices corresponding to bilinear square finite
elements is given. Also a relationship is established which enables the system matrices
for a larger number of elements to be generated from system matrices of a smaller set

of elements of the same type.
KEY WORDS: Bilinear square elements, system matrices, finite element method.

INTRODUCTION

This paper provides an algorithm for generating the system matrices
corresponding to bilinear square finite elements on a square domain for the solution of
second order partial differential equations. Also a relationship is established which
enables the system matrices for a larger set of bilinear square elements to be obtained
from the system matrices of a smaller set of elements of the same type.

In this paper the second order partial differential equations are those whose key
integral (obtained from the variational form) is of the form.

{ /‘7*« =
fRf(ut,v +uv, +uyv jdxdy = 0

where R is a square domain (Strang & Fix, 1973; Norrie & Vries, 1973).
If we let ¢, be the basic function, for the trial space on R, associated with node j of the
finite element method subdivisions, then

i

M = (ml.j), m;, fRf(Di q>j dxdy and

o
I

K = (k) j fkf(“’i,xq’j.x * 0,9, )dxdy
with ¢, = 5% ¢,, are the finite element system matrices (Norrie & de Vries, 1973).

M is the mass matrix while K is the stiffness matrix (Barry,. 1974; Norrie & de Vries,
1973, Strang & Fix, 1973). The solution of the key integral is reduced by Finite
Element Method to the solution of the system of equations:

MP(t) + KP(t) = 0
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where P is the vector of nodal parameters (Olayi, 1977; Norrie & de Vries, 1973;
Strang & Fix, 1973),
WHY SQUARE DOMAIN/ELEMENTS

The author's use of square rather than rectangular domain or elements is based
on: (a) any domain that admits rectangular elements can also admit square elements; (b)
computation is greatly simplified if square elements are used instead of rectangular
clements; (Barry, 1974; Olayi, 1977).

Any rectangular domain, with vertices (x,,¥;), (X5.¥4), (X,,¥,) and (%,,y,) in the
(», y) - coordjnate system can be iransformed into a unit square with vertices at (0, 0),
(1, 0), (1, 1) gnd (0, 1) in the (s, £) coordinate system, by the transformation:

x =%, + (x,-x)8 ‘

y=y+ - ‘
This transformation may not even be necessary as any rectangle can be subdivided into
squarcs,
GENERATING THE SYSTEM MATRICES

Divide the square domain R, into N? square subdivisions. Associate with each
node j the basic function ¢; which is made up of bilinear elements. ¢, is nonzero on
those elements which share node j and zero elsewhere (see any of the references for
details on &),
Theorem 1

If R is divided into N*egual squares of size h and §i(x,y), j = 1,2,3, ..., o,
where n = N -+ 1, are the basis functions of the trial space composed of bilinear square
elemenis, then the mass and stiffness matrices have only six distinct entries each, i.e.

8 {ff@i% dxdy|i,j=1,2,.. 'nz} = {0, m, 2m, 4m, 8m, 16m}
b) {fﬂf{%"‘%'* v, 0, Naxdvli, 31,2, .., nz}

= {-k, ~2k, 0, 4k, 8k, 16k}

where m = h%/36; k = 1/6.
Proof
The (i, j)* elements of M and K depend on the positions of the nodes i and j,
and those in the same class have the same value as follows.
A. Diagonal elements, .. i = j

D-1 Ifi is & node at a vertex (corner note) then m; = f f o> dx dy = 4m and
R

ky = fnf[%,xcb‘i,x * %,ytbi,y]dxdy = 4k

D-2 Ifiis a node on the boundary of R other than a corner node
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my = fRfcbidx dy = 8m and k; = fﬂcbfx + CDf,y)dXdY = 8k

D-3 Ifiis a node in the interior of R, my = f f(bf dx dy =18m and
R

ky = ff(qﬁ,x * ¢§,y)dxdy = 16k

B. Off diagonal elements i.e. 1 # j
0-1 If i and j are adjacent nodes on the boundary of R, then

my = [ [0 dxdy = 2m k= [[lp, 0, o, 0, lixdy = -k

0-2 If i and j are adjacent nodes at least one of which is an interior node, then

my, ‘— ffrp)@} dxdy = 4m and K fﬂ RPN op dedy = -2k

1L,y iy

0-3 If i and j are nodes on the same diagonal of the same element,

m ffct»q) dxdy—mandk fﬂ Lo ]dxdy:~2k

Ly iy

b

0-4 1f i and j are at least 2h apart, T j f ¢, dxdy =

ky = [fJos,.05,.7 0,00, Jdxdy -

The above can be easily established once the ¢, are constructed. Remember ¢
is a piecewise bilintear function, nonzero only on the elements on which it is defined; and
so the limits of integration depend on the associated elements (Strang and Fix, 1973;
Olayi, 2000). If each element e is transformed into the square,

S = {(x,y) | 0 < x,y < h}, then only integrals of the following form:

(i) foh(1~—-15)2dco , (ii) fohw(l*%] do>
vew h . h
(iii) fo w?dw and (iv) . dw.

are involved in the computation of m;; and k;;. This completes the proof.

It is clear from the proof that the system matrices can be generated using D-1 to
D-3 and 0-1 to 0-4, by constructing only a few selected basis functions and the elements
fall into six classes only regardless of the size of the system matrices. This will save a
lot of time, labour and space.
Theorem 2

Supnose M™ and K™ are the system matrices corresponding to N2 bilinear square
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finite elements of R of size h; while M® and K® are the system matrices for N2 bilinear
squares finite elements of size h,, where N} > Nf

Then

(a) m}z’ = (l/Bz)m}” s j=1,2, ... 6

(b) k& = k! 0=1,2, ... 6
where 8 = h,/h,.
Proof

For each of the two subdivisions, choose one element from each which falls into

the same classification as given and transform them into S, and S,. Note that
NZ > N}implies h, > h,.

(hy, hy) (hy, hy)

il i2
(0, 0) (0, 0)

Let ¢y, §;, be the basis function for node i1, j1 respectively of S, and ¢;,, ¢, the
basis functions for the corresponding nodes i2,,j2 of S,.
¢y (tp) = §yy(hytrhy, hyplhy)
= (bn(ﬁt, Bu) (i)
Similarly ¢y, (t, u) = ¢;, (Bt, Bp) (ii)

mi(;,)jZ = fsf(plZ(t'mq))Z(t’}j)dtdu
2

i

= hj/hlzfs fzp“ (v, @) ¢, (v, 0) dvde
1 .

kBho = [ [ (04, (Em) 0, (E0) +0,, (£, 0, (£,0) ) dEdy

it

And
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= 67 ({0, (BE, BRIOy,  (BE,BR) +0,, , (BE, BR) 0, , (BE, Bp) Jdtan

ilu
- fsf(¢il,v(vrw)¢jl,v<v,w) 04,0 (Vi0) oy, (v, @) )dvde
= ki(ll)jl

This completes the proof.

This theorem is important since the accuracy of the Finite Element Method
depends on the size of the element. When the number of subdivisions is increased to
achieve a better result, it is no longer necessary to start all over from the beginning to
compute the corresponding system matrices. '

CONCLUSIQN

Theorems 1 and 2 provide the second (the first was for system matrices of linear
triangular elements; Olayi, 2000) algorithm in automating the generation of system
matrices in Finite Element Method. Several algorithms have been published and are
being used fur automatic generation of finite elements (Bellingeri and co., 1995).

It is hoped that this will encourage others to seek for algorithms that can be used
to automatically generate system matrices corresponding to other types of finite elements.
This will not only ease the complexity in finite element programming but also will bring
the most powerful tecimnique for solving a large class of partial differential equations,
(Strang & Fix, 1973), within the reach of more people.
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