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A NEUMANN PROBLEM FOR AN ELASTIC CYLINDER UNDER

OUT-OF-PLANE LOADING

ABSTRACT

JAMES N. NNADI

(Received 17 December, 1999 Revision accepted 13 February 2001)

The deformation fields for a solid oylinder subjected to self-equilibrating out-of-plane shear loads are studied by
analysing the general fum:tmnal forn of the displacement field, which were derived as  solution of a Neumann
¢ probler. The shear stress stales along. the segments O=1x, 0 <r <a and at the origin are determined. The
stress component at the sua’mm of the cylinder, which is not immediately predictable from applied load is also

derived.
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INTRDDUCTION

A homogenous and isciopic solid coylindrical
material occupying the region ~w<z <w©, 75 8,
-1 < § <7, is subjected to unlfonaly distibuted seif-
equilibrating shear cads of magnitude © along the
segments r = a, 0 <0 < and 526 < 0 (Fig. 1) All
comppnents of dispiacement vanish except w(r, 9),
- the one perpendicular {o the plane z = constant,
which satisfies the Laplace eguation.

# 18 109"
e w(r, 0)=0, -ns 0 ) 1
[&2 rrarc=) MU

[ ]

The loading induces the baundary conditions

id D«b<np
_é‘N_ (a’ 9) = “ ] (2)
or =X ew<®<D
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whera pis shear modulus of elasticity. Fquations
(1) - (2) will be solved to get the genaral form of the
displacement field everywhere in the cylinder.

Analytic Solution By Transform Technique
Theocaris and Defermos, 1964, have analysed a
rectangular strip under plane stress using a
different technique. Here, the task of solving (1) -
(2) in a cylinderical region is transformed info a
right-half plane problem using the holomorphic
function

C;(z)-—?—;% s Z=XKAlY

Let L(r, ©) = u(r, 6) + v (r, ©)

and denote a polar coordinate (p, ¢) for the right-
half plane (Fig. li) by
u=pcos ¢ and v =p Sind

Then
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a® - 2ar cos0 + 12
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and
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Fig. 1: Geometry of the problem

Fig. il: The Jight hall plane
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; 'i‘“hjeref(";re, for -n < ® < =, we have . ‘

2(a, 0)=0 R, 0=t [ \

where the relation between sin® -and -p(a, 6) can ‘ /

be derived using Fig. lil. /

Denoting the right-half plane dispiacement by —

W(p, ¢) = w(r, 8) we obtain

W oV, 4]0
'E‘r—(av 9)"' 64) [p' i2j or (av 9)

The shear stresses that are non-zero are

oulr, =L 0) ®)

5elt, =31, ) ©

Prablem (1) - (2) is thus transformed into the
Neumann problem

2 10 102 n n
e —— e (WP, $) =0, =< o< — (7
[a,,z = p2a¢2] ) SSesZ ()

p>0

oW 2 1
—54‘—[;). i—;—]=——?p(1+pzy ®)

The asymptotic relatior as p - G and &>
p—» o are obtained by asc 'mg a soluti  of ti:
formp

Wip, 9) = O (0" ©)

and noting that the stressey have the behaviou:
(Earmme et al 1992)

a2 (P, §) = Sgz(p, ) =0 (p*")
k Frc.. ‘7) with p < 1, we have

ca(p, i—g]=231(1-p2+p4~. .. )

implies k = 1 and yields W((p, $)=0O(p)as p —> 0 ~

From (7) with p > 1, we have

o¢z(p. ¢):2a‘c(p’2-p'4+p"6m ... )

‘implies k= -1 and gives W(p, $) =0 (p ) as p - »

e® = pP~1v2ip, ¢ = -2 (- 0<0<m)
p?+1 pPH

Fig. lli: Corresponding coordinates at the boundary of
the cylinder

Let W(s, ¢) denocte the Mellin transform of

Wip, ¢) defined by

Ws, ¢)=J‘W(p.~¢)p“dp , -1<Res<i  (10)
0

Taking the Mellin transform of (7) arii (8) gives

d? o
[WJrsz]W(s, $)=0 (11

dW ) _ 2art
—EEJ,*[S, iE] = ';-- f(S) (12)
where

fs)= [ (492" p* dp

0

Using formuler 3.241 2 (Gradshyteyvn and Ryzhik

1965) we “jet
#t
f(s) = —rv" e B
(s) Zoos 15 es<1
The solution
W(s,,9) = Asins$+Bcos s (13)

together with (12) give

sAcosEs-sBsink g s oo fin)
2 2 i

sAcos—"~s+sBsin1‘-3m%%ﬂs)
2 2 n
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Therefore B =0 and-(13) becomes

- natsins
Wis, ¢)="’_”““T7T(t
puscos®}s

to which we apply the inverse Mellin transform

denoted by

C+ico

Wip, “”“”“1". Wi(s, §)p°ds

C—-in

to get the displacement as

: C+iw
nart sinsg p®
Wi(p, ¢)= - ds, -1<c<1 14

(b, 4 w2mni :i[ scos’ s a9

in (14) the integrand has doublg poles at

s=+(2n-1),n=1,2, 3, ... Residue theory is used
to evaluate the integral. Thi contours are then
closed appropriately, Res < 0 for p < 1 and Res > 0
for p> 1, in accordance with Jordan's lemma
(Whittaker and Watgon 1862). The displacement
can then be written as:

wAr, 0) =W (p, ¢)

r sin(2n-1)¢

0 p2n1
pZ;Zn—
n-

Z«E—~ sin (2n-1)¢
- 4at 1 2
T "

2n
~¢Z —ocs@n-1)¢ p<

4123

(15

1-2n

{Inpzw:p sin(2n-1) ¢

o0

Z " ——=sin(2n-1)$

4ar 1

Tl 2, ot-2n

~¢Z-~_ﬁcos(2n Ve p>1
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displacement.

3. Stress Distribution

The general expression for obtaining the stresses
anywhere in the cylinder is got from (15) by cham
rule together with formulas (5) and (6).

The form of the stress along the segments

0 = 1m, 8 = 0, 0 <r <a which correspond to the forry
with ¢ = 0, p < 1 and p>1 respectively, can now ba
derived.

For 6=+4n, O<r<a, we have

a-r Op

— 2 1, —Ar, =

A P< %(r tn)=0
Then

ow o

56(:’, L*:Tﬂ)"*—;;(p 0) (r iﬂ,) p<1
leads to

Soglr, iw):gﬂln(iﬂ;J

nr a+r

; 0
since -d—)-(r, +m)=0 and M(p, 0)=0 it follows
or op
ow
that —6—r~(r, tn)=0. Hence o,(r, +1)=0. When

0=0, O0<r<a we have E—Jr—[——~-p>1. Thus
roP

=L J’
(79( )" l’(p 0) (" 0) ., p>1
leads to
Goz(r, 0) :E?—Eln(ii"_)
nr a-r
ow

In this case as well Tr(r, 0)=0, {ogether witﬁ (6)
C

imply o,(r, 0)=0.
Since the stresses are continuous we apply
L'hopital's rule to get the stress at the origin. The

result is ¢, (0, 0)~hmcnz(r )__233

n

On the surface of the cylinder, r=a,

-a<l<n we have ap(a 9) = L.__)

12
"’(a 0)=0 and p(a, 0) = [J:EE&Q]’ _

1-cos 0
Plantos thd dam'gv, mmu»é’ ' A ] meps
onto X < T
(o} —-2—_.B<7r, -n<Gs-E, I =a respectively,
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and that¢=-;-. ¢=-g, p>1 map onto
0<95% ) -%se<o , Tr=a respectively.
Th«erefore‘
ow W ) Op
—(a,0)=—1|p, t=|—(a, 6
ae( ) % [p z]ae( )
together with (5) lead to
T 1+cos 6
a, 0)=—In ,
oex(@. 6) na (1—cos()] 0<6<m
=——Lln(1+cosa), -7t<9<0 .
na 1-cos 6
Conclusion

Though the solution of the Neumann problem (1) -
(2) is not unique we obtained a solution that
possesses standard characters relative to shearing.

The stress states indicate high concentration at the
origin, ogz (@, 6), 6 = ——g , becomes smaller for

larger cylinders (a > 1).
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