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ENERGY CHARACTERIZATION OF CHAOS IN THE HYDROGEN
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ABSTRACT

The kinetic energy possesset on the Poincare surface of section has been used as a
measure of the degree of chaoticity in the case of the Hydrogen atom in a uniform
magnetic field. Polynomial expressions have been obtained for the maximum, mean, range
and standard deviation of the kinetic energy on the Poincare surface have been obtained as
functions of the scaled energy of the system.
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INTRODUCTION

The Hydrogen atom in a uniform magnetic field {(of strength B} is described by the
Hamiltonian
»yooel |
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where zis the direction of the field, m_ is the reduced mass of the electron (ol charge ¢)

) el . .
and the nucleus, and « is half the cyclotron frequency, equal to En 1 is the radial
2 ¢

distance of the electron from the nucleus of the atom, /_ the z component of the angular

momentum of the electron in the Cartesian (x,y,z) -coordinate system and p is the
momentum of the electron. It has been shown (Friedrich and Wintgen (1989)}, that the
dynamics is equivalent to that given by the Hamiltonian:
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where ¢, the scaled energy 113 = - | determines the degree of chaoticity of the
0

system and B, = me'c/h', the value of the magnetic field strength at which the oscillator

energy equals the Rydberg energy. W (Friedrich and Wintgen{1989)). ¢,.¢,.p, and p, are
the coordinates and momenta of the equivalent system respectively.
The dynamics of a bounded Hamiltonian system with a Hamiltonian /(g .p, ) with

i=12and |p,1. iq,| <o, is determined by the Hamilton canonical equations of motion,
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The equations of maotion resulting from canonical equations define a mapping from the
phase space onto itself, that is area preserving {Liouvilie’s Theorem).

The trajectory of such a system is governed by some constants /(g,.p,} of motion.
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~L}—”-=O. If there are not sufficient numbers of such constants, then the system is

. . . . - . N . .
deterministically chaotic. The rattern of chaos is furnished by mapping the trajectory onto
_a Poincare surface of section given by, say, ¢, =0, p, >0. -

The degree of chaoticity of non-integrable systems has been measured by various
authors {Henon and Heiles (1963), Mo (1972),/Toda {1974}, Brumer and Duff (1976), Noid
et al. (1977), Chirikov (1979), Henon (1983), Harada and Hasegawa (1983), Schuster
{1984)). Others include Chirikov and Shepelyansky {1984), Klimontovich (1987}, Akin-Ojo
(1993}, Torcini (1996), Tiwari and Rao (1998). In the case of the Hydrogen atom in a
uniform magnetic field, the degree of chaoticity is determined by the parameters .

There is a growing interest in the statistics of recurrences (Aframovich and Zalavsky
(1998), Chirikov and Shepelyansky (1999) and Floriani and Lima (1999)). This has
motivated this work, which attempts to find numerical measures of chaoticity on the
Poincare surface of section. In particular, we investigate the variation of the total kinetic

2 2
)+ p . . .
_LL?/_L energy on the Poincare surface with the scaling parameter ¢.

METHODOLOGY

The Runge Kutta method was used in solving the ordinary differential equations that
resulted from the Hamiltonian:

—57 P = —[25(1, + i@éfl;i + 2‘1;&} o (5)
%pz = —(25612 + 4‘12;(1‘2 + 2(1;(1‘4 ] (6)
%ql =p, ™
%q. =p, (8)

For each scaled energy of the system, ¢, a uniform mesh of initial points covering
the Poincare surface was mapped out and the four measures of distance computed. Sixty
initial points were considered in all cases. In each case, 300 intersections on the Poincare
surface were observed.

RESULTS AND CONCLUSION

The randomness of some physical parameters associated with a system is a
measure of the degree of its chaotjgity. Thus, we expect a greater spread ir, the range and
the standard deviation of the kinetic energy of the system. In addition, the more chaotic a
dynamical system is, the more of the area it traverses on the Poincare surface. Thus, the
mean and the range of the kinetic energy are expected to increase with the degree of
chaoticity.

Fig. 1 shows the proportion of the surface of section covered by chaotic orbits, as
reckoned using the meshes. This compares well with the result due to Harada and

Hasegawa (1983) and is an indication that the sampling has truly reflected the dynamics of
the system.



ENERGY CHARACTERIZATION OF CHAOS IN THE HYDROGEN ATOM IN A UNIFORM MAGNETICFIELD. .

159

Fraction of regular orbits

The maximum, mean, range and standard deviation of the total kinetic energy on the
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Fig. 1: Fraction of regufar orbits in the surface of
section as a function of scaled energy
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Poincare surface are illustrated (together with lines of best fit) in Figs. 2 to 6.
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Fig. 3: Mean kinetic energy against scaled energy
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Fig. 2: Maximum kinelic energy against scaled energy
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Fig. 4. Range of kinetic energy against scaled energy
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Fig. 5: Standard deviation of kinetic
energy against scaled energy

The following expressions are the respective polynomial fits for maximum, mean,
range and standard deviation of the total kinetic energy as functions of the scaled energy
of the system.

49.614¢" +143.787s* +150.008¢* + 67.435¢+13.191
11.4678¢" +26.7082¢> + 23.2929¢ +9.41641¢ + 3.68174
14.3072s" +71.5824¢° +99.097 16 +53.14845+10.0935
12.8913&* +28.9093¢” +23.555¢” +8.37202¢ +1.28571

Thus, the lines of best fit for each of the measures of the kinetic energy are all
polynomials of degree four. All the parameters increase with the degree of chaoticity of the
system, as measured by the parameter &,
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Our analysis has taken into consideration the values of & between — 0.1 and -0.8.
A search of the literature nas not revealed that there has been any numerical measure
obtained for a chaotic system on the Poincare surface.
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