GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 23, 2017: 367-375 COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579 www.globaljournalseries.com, Email: info@globaljournalseries.com

367

CARBON INTENSITY OF THE ENERGY SECTOR FOR TOGO IN 2012

KOKOU SABI, AKPE AGBOSSOU, ABIZIOU TCHINGUILOU, ZIKPO FO-ME AND AYASSOU KOFFI

(Received 21 June 2017; Revision Accepted 19 July 2017)

ABSTRACT

Togo, a least developed country, is ambitious to emerge by 2030 and the energy parameter remains indispensable with concerns as a source of emission of greenhouse gases. This study analyzed carbon intensity in the energy sector in Togo in 2012 in order to provide decision-makers, producers, distributors and final consumers with reliable data to achieve the objective of low carbon development in compliance with Togo's commitment in its Nationally Determined Planned Contributions (CPDN). In line with the IPCC 2006 methodologies, greenhouse gas emissions in 2012 in Togo are estimated at 1856.202 Gg for carbon dioxide (CO₂), 15.352 Gg for methane (CH₄) and 0.2431 Gg For nitrous oxide (N₂O), i.e. a total of 2253,955 Gg CO₂equivalent(Gg CO₂-eq) of direct GHGs. Indirect GHGs are emitted at 558.525Gg, 7.942Gg, 34.252Gg and 2.563Gg respectively for carbon monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (NMVOCs) and sulfur dioxide (SO₂). The carbon intensity linked to the Energy sector in Togo amounts to 1,797x10⁻⁹ Gg CO₂-eq / GDP, at a time when the standard of living was \$ US 319.222 per Capita. Road transport, with 1368 Gg of CO₂ emissions accounting for 55.4% of total direct GHG emissions, is the first key source. With an uncertainty of about \pm 23.887% on the overall estimate and a relative difference of 12.37% between the CO₂ estimates by the sectoral and reference methods, the inventory is coherent as a whole.

KEYWORDS: Green House Gas (GHG), Carbon Intensity, Energy, GDP.

INTRODUCTION

Togo is currently characterized by three main sources of energy consumption, namely Manufacturing and Construction Industries, Transport and Residential, Commerce and Institutions. Manufacturing and construction industries include food, beverages and tobacco; the textile; Clothing; Wood and wooden articles; Printing works; the paper; Publishing; The chemical and metal industries, and the mining and quarrying industries (phosphates, clinker). The current transport system consists of road, rail, domestic and maritime modes. In the residential, commercial and institutional sectors, energy consumption is dominated by activities in households and large institutions such as large stores, major administrations, universities, schools, hotels, embassies and banks.

The rapid appraisal and analysis of the 2012 Gaps entitled "Sustainable Energy for All" (*UNDP*, 2012) indicated that the final energy consumption in 2008 was 1,949.61 Ktoe, of which 1,468.71 Ktoe in biomass (firewood, charcoal and agricultural residues) or 75.3%; 426.12 Ktoe in petroleum products (21.8%) and only 54.78 Ktoe in electricity (2.8%). Although Togo is an importer of electricity from neighboring countries, national needs are complemented using fuel-fired power plants (diesel, jet fuel) and biomass. As a least developed country, Togo wants to emerge by 2030 and the energy parameter remains very indispensable and therefore a source of greenhouse gas emissions. This study analyzed carbon intensity in the energy sector in Togo in 2012 in order to provide decision-makers, producers, distributors and final consumers with reliable data to achieve the objective of low carbon development in compliance of Togo's commitment contained in its intended Nationally Determined Contribution (INDC). The analysis in this study focuses on the carbon intensity of the three (03) direct greenhouse gases, namely carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O).

2. MATERIAL AND METHODS

2.1. MATERIAL

The data collection sheets and the solicitation letters were used to gather the necessary quantitative data. The Intergovernmental Panel on Climate Change (IPCC) Emission Factor Data Base (EFDB) was used as a tool for collecting emission and conversion factors. The IPCC manuals for Greenhouse Gas Inventory (GHG) inventories were used as a planning guide. Data analysis is done with the reference tool for the calculation of GHG emissions from energy consumption, namely the IPCC methodologies and the IPCC Inventory Software (*IPCC*, 2006). Decision trees were used to

Kokou Sabi, Laboratoire de Chimie Atmosphérique/FDS /Université de Lomé, B.P. 1515 Lomé, TOGO. Akpe Agbossou, Ecole Nationale Supérieure d'Ingénieurs/ Université de Lomé, B.P. 1515 Lomé, TOGO Abiziou Tchinguilou, URASE / Ecole Supérieur d'Agronomie / Université de Lomé, B.P. 1515 Lomé, TOGO. Zikpo Fo-Mè, Laboratoire de Chimie Atmosphérique/FDS /Université de Lomé, B.P. 1515 Lomé, TOGO. Ayassou Koffi, Laboratoire de Chimie Atmosphérique/FDS /Université de Lomé, B.P. 1515 Lomé, TOGO. KOKOU SABI, AKPE AGBOSSOU, ABIZIOU TCHINGUILOU, ZIKPO FO-ME AND AYASSOU KOFFI

choose methodological tier levels in accordance with the IPCC Good Practice Guidelines.

2.2. METHODS

Statistical data on imports, changes in fuel stocks and detailed statistics on final consumption were collected at the Ministry of Trade and Industry and specifically at the Directorate General of Energy and the data for the balance sheets Energy projects are collected at the Directorate-General for Energy. The same data were collected from oil companies, manufacturing industries, businesses and institutions. Surveys in the household and transport sub-sectors have enriched the database of annual fuel consumption such as kerosene, diesel, gasoline, LPG, heavy fuel oil, coal and fuel wood. Two Tier 1 methods were considered in accordance with the IPCC 2006 guidelines. These are:

- the Level 1 reference approach that provides only aggregate emissions estimates by fuel type, distinguishing between primary and secondary fuels, and
- the Tier 1 sectoral approach based on end-use data, combustion types and industry-specific technology where known.

The basic equation used for emission calculation is given by: $Emission_{GES,comb} = consom_{\cdot comb} \times EF_{GES,comb}$

Where:

- Émission_{GEScomb} = Emissions of a given GHG by fuel type (kg GHG)
- Combustible fuel consumption = Amount of burned fuel (TJ)
- GES emission factor, comb. = Default emission factor of a given GHG by fuel type (kg gas / TJ).

RESULTS AND DISCUSSION

Data collection provided the input parameters for the Tier 1 methods approach which uses the Activity Data (AD) and the Emission Factors (EF) as well as the associated uncertainties (Table 1). The uncertainties on the EF and parameters are and parameters are the IPCC default data. Fuel consumption was collected for subcategories 1A1 to 1A4 according to the IPCC 2006 nomenclature.

Fuel	EF	AD	DATA UNCERTAINTY				
1.A.1.a.i - Electricity Generation							
Jet Kerosene	44.1 TJ/Unit	1.6 Gg	15%				
Gas/Diesel Oil	43 TJ/Unit	2 Gg	15%				
1.A.2.e - Food Processing, Beverages and Tobacco							
Gas/Diesel Oil	43 TJ/Unit	1.6 Gg	10%				
1.A.2.f - Non-Metallic Minera	als						
Residual Fuel Oil	40.4 TJ/Unit	45 Gg	10%				
1.A.3.a.i - International Avia	tion (Internatio	onal Bunke	rs)				
Jet Kerosene	44.1 TJ/Unit	78 Gg	20%				
1.A.3.b - Road Transportation	on						
MotorGasoline	44.3 TJ/Unit	145.4 Gg	20%				
Gas/Diesel Oil	43 TJ/Unit	252 Gg	20%				
1.A.4.a - Commercial/Institu	tional						
Wood/Wood Waste	1 TJ/Unit	6207 Tj	25%				
Charcoal	29.5 TJ/Unit	32 Gg	25%				
1.A.4.b - Residential							
OtherKerosene	43.8 TJ/Unit	56.5 Gg	20% - 25%				
Liquefied Petroleum Gases	47.3 TJ/Unit	6.5 Gg	20% - 25%				
Wood/Wood Waste	1 TJ/Unit	31487 Tj	20% - 25%				
Charcoal	29.5 TJ/Unit	603 Gg	20% - 25%				

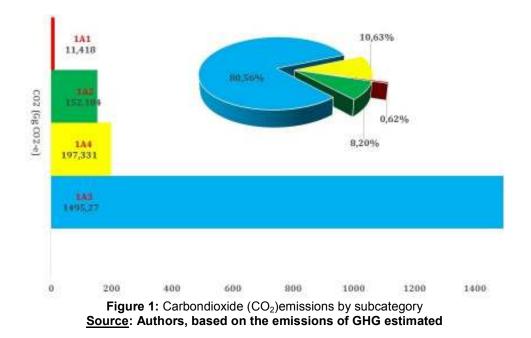
 Table 1: Fuel consumption data for 2012 in Togo

The aggregate emissions data for 2012 are reflected in the table in decision 17 of the eighth Conference of the Parties to the UNFCCC (*Table 17/CP.8*).

368

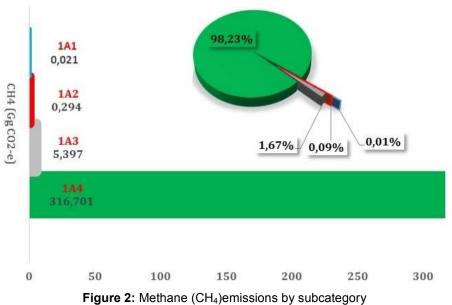
Table 2. Aggregate emissions data (Table 17/07.0) inventory feat: 2012							
Greenhousegas source and sinkcategories	CO ₂	CH ₄	N ₂ O	CO	NOx	NMVOCs	SOx
Greenhousegas source and sinkcategories	(Gg)	(Gg)	(Gg)	Gg	(Gg)	(Gg)	(Gg)
1 – Energy	1856.202	15.352	0.2431	558.525	7.942	34.252	2.563
1A - Fuel Combustion Activities	1856.202	15.352	0.2431	558.525	7.942	34.252	2.563
1A1 - Energy Industries	11.418	0,001	NE	NE	NE	NE	NE
1A2 - Manufacturing Industries	152,184	0.014	0.0022	NF	NE	NE	NE
and Construction	152.104	0.014	0.0022				
1A3 - Transport	1495.270	0.257	0.070	81.492	1.67	9.7623	2.563
1A4 – OtherSectors	197.331	15.081	0.171	477.033	6.272	24.490	NE
1A5 – Other	NO	NO	NO	NO	NO	NO	NO
1B - Fugitive Emissions from Fuels	0	0	0	0	0	0	0
1B1 - Solid Fuels	NE	NE	NE	NE	NE	NE	NE
1B2 - Oil and Natural Gas	NE	NE	NE	NE	NE	NE	NE

Table 2: Aggregate emissions data (Table 17/CP.8) Inventory Year: 2012


<u>Source</u>: Authors, based on the estimation <u>NB</u>: NE=Not estimeted ; NO = Not Occuring

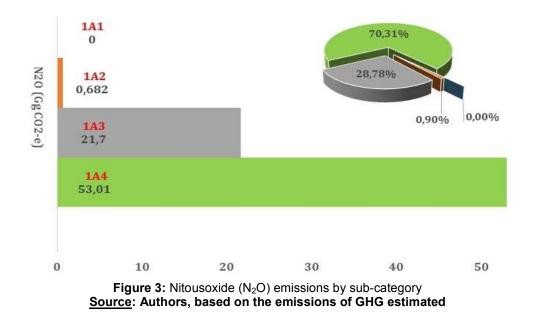
Energy sources in Togo are in four subcategories: Energy Industries (1A1), Manufacturing Industries and Construction (1A2), Transport (1A3) and Other Sectors, i.e. Residential and Commercial & Institutions (1A4); based on the results in Table 17/CP.8.

Since sources of fugitive emissions (category 1B) are insignificant because Togo does not have extractive industries, emissions from the sector are therefore allocated only to fuel combustion in category 1A. Fuel combustion activities are mainly related to two main sources: stationary combustion in energy industries that include energy extraction, energy production and transformation; In the manufacturing and construction industries; In the construction industry (shops and institutions); In the residential for lighting, cooking, heating; And in agriculture / forest / fishing and


mobile transport-related combustion such as aviation (civil and military); The road (cars, vehicles and motorcycles); The railways (transport of phosphates and clinker) and navigation.

Emissions are estimated at 1856.202 Gg for carbon dioxide (CO₂), 15.352 Gg for methane (CH₄) and 0.2431 Gg for nitrous oxide (N₂O) for a total of 2253.955 Gg CO₂-eq of direct GHGs emitted on the basis of Global Warming Potentials (GWP 100) whose values are 1, 21 and 310 respectively for CO₂, CH₄ and N₂O.Carbon dioxide (CO₂) emissions are in the proportions (*Figure 1*) of 80.56% for Transport (1A3); 10.63% for Residential, Commerce and Institution (1A4); 8.20% for Manufacturing and Construction Industries (1A2) and 0.62% for Energy Industries (1A1).

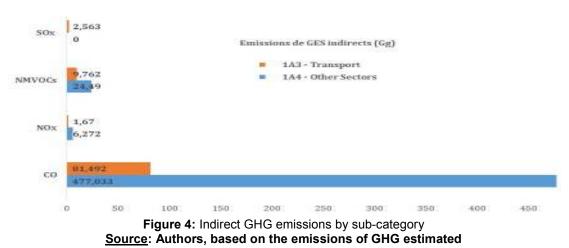
370	KOKOU SABI.	AKPE AGBOSSOU.	ABIZIOU TCHINGUILOU.	ZIKPO FO-ME AN	D AYASSOU KOFFI
-----	-------------	----------------	----------------------	----------------	-----------------


The distribution of methane (CH_4) emissions amounts to 98.23% (*Figure 2*), almost all to the Residential, Commerce and Institutions (1A4) subcategory. Other contributions are low at 1.67%; 0.09% and 0.01% respectively to the subcategories Transport(1A3); Manufacturing and Construction Industries (1A2)andEnergyIndustries(1A1).

Source : Authors, based on the emissions of GHG estimated

The main source of emission of nitrous oxide (N_2O) is also the Residential, Commerce and Institutions (1A4) sub-category with 70.31% (*Figure 3*). It is followed by Transport (1A3) with 28.78%. Emissions in the

Manufacturing and Construction Industries (1A2) of N_2O are estimated at 0.682 Gg CO_2 -eq which is close to 0.90%, while they are zero in the Energy Industry.



Carbon monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (NMVOCs) and sulfur dioxide (SO_2) are the indirect GHGs emitted by fuel

combustion in the two (02) subsectors Transport (1A3) and Residential, Commerce and Institutions (1A4) as shown in Table 3 and Figure 4.

CARBON INTENSITY OF THE ENERGY SECTOR FOR TOGO IN 2012

Gas	subsector Transport:	subsector Transport	
	1A3	1A4	
CO	81.492 Gg	477.033 Gg	
NOx	1.670 Gg	6.272 Gg	
NMVOC	9.762 Gg	24.490 Gg	
SO ₂	2.563 Gg	0.000 Gg	

The carbon intensity was analyzed as a ratio between its CO₂ emissions and its wealth production. Considering all economic sectors as well as all energy sources, this indicator reflects the emission level of the industry, the nature of transport and the level of Togo's use of carbon. The analysis only considers estimated direct greenhouse gas emissions. In 2012, the Togolese population was estimated at 6,547,806 inhabitants and the Gross Domestic Product (GDP) at constant prices based on the year 2000 was 2,090,204,649.530 \$ USwith a decay rate of 4.807% (MEF, 2017). Aggregated direct greenhouse gas (GHG) emissions are estimated at 2,253,955 Gg CO₂-eq in the same year. The sector's carbon intensity in 2012 is equivalent to 1,797x10⁻⁹ Gg CO₂-eq / GDP, and at that time the standard of living in Togo was \$ US319.222per

inhabitant. Assuming a Business as Usual (BaU) for which the standard of living would remain constant over the period 2000 to 2015, the annual emission (Gg CO₂eq) in the Energy sector could be expressed by the equation:

$$E_{ES} = 0,344 \times 10^{-3} \times Pop$$

With: E = Emission; ES= Energy Sector and Pop = Population

From this relationship are deducted emissions giving the trend over the period 2000 to 2015 in the Energy sector (Table 4). Figure 5, showing the change in GDP emissions at constant prices, showed a strong correlation between emissions and GDP.

Année	2000	2001	2002	2003
PIB (10 ⁶ \$ US)	1535.657	1515.673	1496.080	1567.695
Emission (GgCO ₂ -eq)	1592.376	1592.376 1630.560		1709.766
				·
Année	2004	2005	2006	2007
PIB (10 ⁶ \$ US)	1606.353	1626.429	1690.370	1726.233
Emission (GgCO ₂ -eq)	1750.800	1792.820	1835.847	1879.908
				· · · · · · · · · · · · · · · · · · ·
Année	2008	2009	2010	2011
PIB (10 ⁶ \$ US)	1768.032	1828.531	1902.114	1994.332
Emission (GgCO ₂ -eq)	1925.025	1971.226	2129.757	2190.242
Année	2012	2013	2014	2015
PIB (10 ⁶ \$ US)	2090.205	2173.140	2300.741	2424.196
Emission (GgCO ₂ -eq)	2252.445	2316.415	2382.201	2449.855

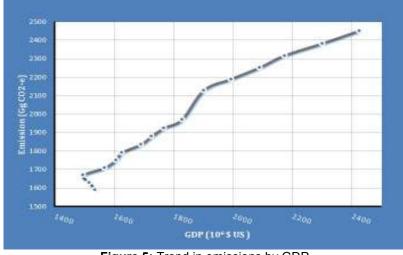


Figure 5: Trend in emissions by GDP Source : Authors, based on the data and emissions of GHG estimated

The uncertainty of the overall inventory is estimated in 2012 at \pm 23,887% and details on sources of uncertainty are compiled in *Table* 5. The highest uncertainties, compared to the average, range from 32,016% to 53,852 % and refer to the estimates of

372

nitrous oxide (N₂O), methane (CH₄) and carbon dioxide (CO₂) attributable to the combustion of biomass and fuel oil in the residential, commercial and industrial sectors and road.

CARBON INTENSITY OF THE ENERGY SECTOR FOR TOGO IN 2012

Table 5: Uncertainty of emissions						
		2012	AD	EF	Combined	
2006 IPCC Categories	Gas	emissions	Uncertainty	ncertainty	Uncertainty	
		(GgCO ₂ -eq)	(%)	(%)	(%)	
1.A - Fuel Combustion Activities						
1.A.1.a.i - ElectricityGeneration - Liquid Fuels	CO_2	11.418	15	15	21.213	
1.A.1.a.i - ElectricityGeneration - Liquid Fuels	CH_4	0.010	15	20	25.000	
1.A.1.a.i - ElectricityGeneration - Liquid Fuels	N_2O	0.029	15	25	29.155	
1.A.2.e - Food Processing, Beverages and Tobacco - Liquid Fuels	CO ₂	5.098	10	15	18.028	
1.A.2.e - Food Processing, Beverages and	CH ₄	0.004	10	20	22.361	
Tobacco - Liquid Fuels		0.004	10	20	22.001	
1.A.2.e - Food Processing, Beverages and Tobacco - Liquid Fuels	N ₂ O	0.013	10	25	26.926	
1.A.2.f - Non-MetallicMinerals - Liquid Fuels	CO_2	140.713	5	5	7.071	
1.A.2.f - Non-MetallicMinerals - Liquid Fuels	CH₄		5	5	7.071	
1.A.2.f - Non-MetallicMinerals - Liquid Fuels		0,338	5	5	7.071	
1.A.2.m - Non-specifiedIndustry - Liquid Fuels	CO_2		5	5	7.071	
1.A.2.m - Non-specifiedIndustry - Liquid Fuels	CH_4		5	5	7.071	
1.A.2.m - Non-specifiedIndustry - Liquid Fuels		0.016	5	5	7.071	
1.A.2.m - Non-specifiedIndustry - Biomass	CO_2		5	5	7.071	
1.A.2.m - Non-specifiedIndustry - Biomass	CH₄	0.165	5	5	7.071	
1.A.2.m - Non-specifiedIndustry - Biomass		0.325	5	5	7.071	
1.A.3.a.i - International Aviation	CO_2					
(International Bunkers) - Liquid Fuels	002	0.000	5	5	7.071	
1.A.3.a.i - International Aviation	CH ₄					
(International Bunkers) - Liquid Fuels	01.14	0.000	5	5	7.071	
1.A.3.a.i - International Aviation	N ₂ O					
(International Bunkers) - Liquid Fuels		0.000	5	5	7.071	
1.A.3.a.ii - Domestic Aviation - Liquid Fuels	CO_2	245.946	5	5	7.071	
1.A.3.a.ii - Domestic Aviation - Liquid Fuels		0,036	5	5	7.071	
1.A.3.a.ii - Domestic Aviation - Liquid Fuels		2.133	5	5	7.071	
1.A.3.b - Road Transportation - Liquid Fuels		1249.324	20	25	32.016	
1.A.3.b - Road Transportation - Liquid Fuels		5.351	20	30	36.056	
1.A.3.b - Road Transportation - Liquid Fuels		19.490	20	35	40.311	
1.A.4.a - Commercial/Institutional - Biomass		800.912	20	30	36.056	
1.A.4.a - Commercial/Institutional - Biomass		43.069	20	35	40.311	
1.A.4.a - Commercial/Institutional - Biomass		7.989	20	40	44.721	
1.A.4.b - Residential - Liquid Fuels		197.331	20	25	32.016	
1.A.4.b - Residential - Liquid Fuels		0.552	20	30	36.056	
1.A.4.b - Residential - Liquid Fuels		0.470	20	40	44.721	
1.A.4.b - Residential - Biomass	_	5518.856	20	30	36.056	
1.A.4.b - Residential - Biomass		273.080	20	40	44.721	
1.A.4.b - Residential - Biomass		44.558	20	50	53.852	
		Sum(D):		Sum(H):	00.001	
		8603,063	570.599			
	Uncertainty in total inventory:					
			23.887			
Source: Authors	hase	d on the est	imation			

Source: Authors, based on the estimation

The Tier 1 baseline approach provided the aggregate estimates of fuel emissions at 1967.522 Gg. Compared to the Tier 1 sectoral method, the carbon dioxide (CO_2) emission of the fuel is 1856.202 Gg, i.e. a relative difference of approximately 06%, which reflects consistency in the estimates.

In 2012 in Togo, key categories analysis of emission sources by level assessment and trend assessment indicates five (05) subcategories:

(a) 1.A.3.b - Road transport: 1249,324 Gg CO₂-eq of carbon dioxide (CO₂), i.e. a contribution of 55.40% to emissions;

- (b) 1.A.4 Other sectors: 316,149 Gg CO₂-eq methane (CH₄) is a contribution of 14,00%;
- (c) 1.A.3.a Civil aviation: 245.946 Gg CO₂-eq of carbon dioxide (CO₂) or a contribution of 10.90% to emissions;
- (d) 1.A.4 Other Sectors Liquid Fuels: 197,331Gg CO₂-eq of carbon dioxide (CO₂) or a contribution of 08.80% to emissions; and
- (e) 1. A.2 Manufacturing and construction industries: 152.184 Gg CO₂-eq of carbon dioxide (CO₂) or a contribution of 06.80% to emissions.

KOKOU SABI, AKPE AGBOSSOU, ABIZIOU TCHINGUILOU, ZIKPO FO-ME AND AYASSOU KOFFI

During national communications (CNI, DCN, TCN), the road transport sub-category was the first key source. Indeed, it is a sector in full evolution with the increase of traffic in the big cities.

CONCLUSION

374

According to the 2006 IPCC methodologies, greenhouse gas emissions in 2012 in Togo are divided between carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NO_X), carbon monoxide (CO) and NMVOCs. Emissions are estimated at 1856.202 Gg for carbon dioxide (CO₂), 15.352 Gg for methane (CH₄) and 0.2431 Gg for nitrous oxide (N₂O), for a total of 2253.955 Gg CO₂-eq of direct GHGs.

Indirect GHGs are emitted at 558,525Gg; 7,942 Gg; 34,252 Gg and 2,563 Gg respectively for carbon monoxide (CO), nitrogen oxides (NO_X), volatile organic compounds (NMVOCs) and sulfur dioxide (SO_2).

The carbon intensity linked to the energy sector in Togo amounts to $1,797 \times 10^{-9}$ Gg CO₂-eq per GDP at the time when the standard of living was \$ US319.222 per Capita. The analysis of the key sources gives five subcategories, with Road Transport at 1,368 Gg of CO₂ emissions, representing a 55.4% contribution to total direct GHG emissions.

The overall inventory uncertainty is about \pm 23.887% but higher on the N₂O, CH₄ and CO₂ estimates of biomass and fuel combustion in residential, commercial and road transport. It sets the level of CO₂ emissions at 2347 Gg. The relative difference between the sector and the reference method is 12.37% indicating consistency in the results.

REFERENCES

- ADEME/DIREM., 2002. 'Energy and green house gas balances of biofuels' production chains in France.'www.ademe.fr/partenaires/agrice/public ations/ocuments_anglais/synthesis_energy_and _greenhouse_english.pdf
- Ballantyne, V. F., Howes, P and Stephanson, L., 1994. 'Nitrousoxide emissions from light duty vehicles.' SAE Tech. Paper Series (#940304), 67–75.
- Barbara, V. Braatz and MichielDoorn., 2005. Gestion du processus des inventaires nationaux des gaz à effet de serre. Programme d'appui aux communications nationales. 1- 63. www.undp.org/cc
- Battacharya, S. C., Albina, D. O and Salam, P. Abdul., 2002. 'Emission factors of wood and charcoal-fired cook stoves'. Biomass and Bioenergy, 23: 453-469.
- Beer, T., Grant, T., Brown, R., Edwards, J., Nelson, P., Watson, H and Williams, D., 2000. 'Life-cycle emissions analysis of alternative fuels for heavy vehicles'. CSIRO Atmospheric Research Report

C/0411/1.1/F2 to the Australian Green house Office. Australia. (March 2000).

CCNUCC, 2007. Manuel du logiciel pour les inventaires de gaz à effet de serre destiné aux Parties non visées à l'annexe I de la CCNUCC. Version : 1.3.2.http://www.ipcccnggip.iges.or.jp/public/gl/software.htm

Database on Green house Gas Emission Factors

- (IPCC-EFDB)., 2015. User Guide for Local DVD/CD application (Version 2.5). Compiled by: Technical Support Unit of the IPCC Task Force on National Green house Gas Inventories and SPIRIT Inc., Bratislava, Slovak Republic. 16p. http://www.ipcc-nggip.iges.or.jp/
- EEA., 2005. EMEP/CORINAIR. Emission Inventory Guide book – 2005, European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005). Available from web site:http://reports.eea.eu.int/EMEPCORINAIR4/en
- Eggleston, H. S. α al., 2006. Lignes directrices 2006 du GIEC pour les inventaires nationaux des gaz à effet de serre, préparé par le Programme pour les inventaires nationaux des gaz à effet de serre. (eds). Publie : IGES, Japon.
- Gamas, D. J., Diaz, L., Rodriguez, R., López-Salinas, E
- and Schifter, I., 1999. 'Exhaust emissions from gasoline and LPG-powered vehicles operating at the altitude of Mexico City.' in Journal of the Air & Waste Management Association, October 1999.
- GIEC., 2004. Manuel de l'utilisateur, relatif aux directives pour l'établissement des communications nationales des parties non visées à l'annexe I de la convention. 30P
- Heeb, Norbert., et al., 2003. 'Methane, benzene and alkyl benzene cold startemission data of gasoline-driven passenger cars representing the vehicle technology of the last twodecades.' Atmospheric Environment 37 (2003) 5185-5195.
- Houghton, J. T. α al., 1997. Lignes directrices du GIEC pour les inventaires nationaux de gaz à effet de serre, version révisée 1996. (Eds). IPCC/OECD/IEA,Paris, France.http://www.ipccnggip.iges.or.jp/public/gl/french.htm

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van

der Linden, P.J., Dai, X., Maskell, K and Johnson, C. A., 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (Eds.), Intergovernmental Panel on Climate Change University (IPCC). Cambridge Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.

CARBON INTENSITY OF THE ENERGY SECTOR FOR TOGO IN 2012

Houghton, J. T., Meira Filho, L. G., Lim, B., Tréanton, K., Mamaty, I., Bonduki, Y., Griggs, D. J and Callander, B.
A., 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Volumes 1, 2 and 3. (Eds), Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/IEA, Paris, France.

- IPCC Emission Factor Database., 2015. Local View Supported by Intergovernmental Panel on Climate Change. Implemented by SPIRIT Inc. 2004-2015.
- Kainou, K., 2005. 'Revision of default net calorific values, carbon content factors, carbonoxidization factors and carbondioxide emission factors for various fuels in 2006 IPCC GHG Inventory Guidelines'. RIETI, IAI, Govt of Japan.
- MCT., 2002. 'Green house gas emissions inventory from mobile sources in the energysector.' (in Portuguese: Emissões de gases de efeitoestufapor fontes móveis, no setorenergético). Brazilian Ministry of Science and Technology, Brasília, 2002, pp. 25-26.
- Ministère de l'Environnement et des Ressources Forestières du Togo., 2002. Rapport sur l'état de l'environnement en Afrique de l'Ouest, Contribution du Togo.
- Ministère de l'Environnement et des Ressources Forestières du Togo., 2001. Communication Nationale Initiale du Togo. Convention Cadre des Nations Unies sur les Changements Climatiques, 210 P.
- Ministère de l'Environnement et des Ressources Forestières du Togo., 2010. Deuxième Communication Nationale du Togo. Convention Cadre des Nations Unies sur les Changements Climatiques, 122 P.
- Ministère de l'Environnement et des Ressources Forestières du Togo., 2015. Troisième Communication Nationale du Togo. Convention Cadre des Nations Unies sur les Changements Climatiques. 136 P.
- Morgan, M. G and Henrion, M., 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, New York.

- Penman, J. α al., 2000. Recommandations du GIEC en matière de bonnes pratiques et de gestion des incertitudes pour les inventaires nationaux de gaz à effet de serre. (Eds), Publie : IGES, Japon.http://www.ipcc-nggip.iges.or.jp/public/gp/ french/gpgaum_fr.htm
- Penman, J., and al. 2000. 'Good Practice Guidance and Uncertainty Management in National Green house Gas Inventories. Hayama: Intergovernmental Panel on Climate Change.' (IPCC). ISBN 4-88788-000-6.
- Programme d'Appui aux Communications Nationales. 2006. Rapport d'atelier d'initiation à la préparation des DCN des pays africains.
- Rypdal, K and Flugsrud, K., 2001. Sensititivity Analysis as a Tool for Systematic Reductions in GHG Inventory Uncertainties. Environmental Science and Policy. 4, (2-3): 117-135.
- Sutkus, D. J., Baughcum, S. L., Du Bois, D. P., 2001. 'Scheduled civil aircraft emission inventories for 1999: database development and Analysis.' NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.
- UNFCCC., 2003. Decision 17/CP.8 : Guidelines for the preparation of national communications from Parties not included in Annex I to the Convention. FCCC/CP/2002/7/Add.2
- UNFCCC., 2004. 'Estimation of emissions from road transport.' United Nations Framework Convention on Climate Change, FCCC/SBSTA/2004/INF.3, June 2004.
- UNDP., 2012. Annual Report 2011/2012: The Sustainable Future We Want. www.undp.org
- USEPA., 2004a. 'Update of carbonoxidation fraction for GHG calculations.' prepared by ICF Consulting for US Environmental Protection Agency, Washington DC, USA.
- USEPA., 2004b. 'Update of methane and nitrousoxide emission factors for on-highway vehicles.' Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004.