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CENTRAL DIFFERENCE APPROXIMATION OF HEAT FUNCTION IN FORCED
LAMINAR FLOW ON FLAT PLATE WITH VARYING SURFACE TEMFERATURE
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ABSTRACT

Heat function formulation i forced laminar flow over a flat plate with spatal surface lemperature vaunation s considered The
vanatlon of the surface temperature rendered the classical analytic approach through spnlanty transformations ntractable in order
o circumvent this difficulty, a computational algorithm 1s presented to approximate the heat function along the plate The surface
temperature estimate employed based, on perturbed collocation method recovers some well known discrete method on the gnid
points namely, the central difference approximations of order two to the derivates, the most accurate p-stable linear multi-siep of
Ritchmeyer and Morton using a legendre perturbation term Numerical results show that the surface temperature varation has
significant effect on the heat transfer. For a given set- of parameters, Re, Pr, and £, a reasonable heat gain 1s indicated for the
spatial surface temperalure variation for the range 0 <~ n -~ 1.0 considered.

KEYWQRDS: Perturbation, Central Difference Flat Plate. Nusselt number

NOMENCLATURE
(VAY = Dimensionless velocity components, u/u. and vRe"/ U
uv = Dimensional velocity companent in x - and y-directions, m/see
X,y = Dimensional horizontal and vertical coordinates. m v
Ua = Mainstream fluid velocity m/sec ‘
Le = Charactenistic length of plate, m
Re..P, = Corresponding Reynolds and Prandti numbers respechively
1 = Fluid temperature, k
Teow = Mean wall temperature, k
Tw = Mainstream fluid temperature. k
N = Number of spatial dwvisions along &,

Greek Symbot

n.§ = Dimensionless horizontal and vertical coordinates, x/ L and y Re" /L. ..
a = Thermal diffusivity of fluid

&%y = Dimensionless thermal boundary layer

B = Dimensionless ten,, erature potential, (T - Tu)(Tww - Tw)

€ = Perturbation parameter

Subscript

3] = Nodal point

w = Wall values

0 = Ambtent condiions

100 INTRODUCTION

The problem of heat transfer in forced laminar flow over a flat plate with varying surface lemperature has been investgated by
many researchers such as Fage and Falkner (1931), Chapman and Rubesin (1949). Tamaki (1951). Levy (1952) and Pumvis (1953)
This 1s due to its numerous apphications such as in the cooling of electronic equipment design of cover pla(e«; for solas (ollec!ors
and in the design of solar food dryers
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The solution of the Problem consists in the determination of the temperature profile along the surface of the plate and in
the thin boundary. layer that developed. For a stepwise axial vanation of the surface temperature in the direction of flow, Kays ang
Crawford (1980) concluded that it is possible to construct a solution of the problem by merely breaking up the surface temperature
doman into a number of constant surface-temperature subdomains and summing or superposing the constant-surface temperature
for each of the subdomains together This method has been-extensively used and has the advantage of being applied not only for
turbulent but as well as laminar flow conditions However, the evaluation of the resulting integral 1s somewhat tedious

In this paper therefore, a computational algorithm for heat function in forced laminar flow over a flat plate with spatal
variation of the surface temperature is presented The energy transport equation 1s discretized following Oluyede (1995) and the
temperature profite along the surface is determined based on perturbed collocaton method of solving second order ODE
formulated by Taiwo (1991) Results indicale a strong vanation of the local Nusselt number along the plate with the Reynolds and

Prandtl numbers as well as the perturbation term, &.

2.0 MATHEMATICAL FORMULATION
The olwsical model and discretized domam with associated Cartesian coordiniate 1s as shown i
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Fig. 1 Schematic for coordinate system, boundary constrants and numerical gnds
The fluid flow over the fiat plate 18 assumed to be laminar, consiant nivpety ana two-aimensional The effect of viscous dissipation

is neglected and the surface temperature 1s assumed {0 vain spa.aity along the praie Hence, the applhicable normalized bouncary
layer equations are;
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Uff‘. + ,vf.g ! '7_3
2 3L & (3)
The normalized boundary conditions are.
E=0, U=V =00 0=F ' ' (4)
. H
E=8%, U-1.0 =V =0,0=0.0
At the stagnation point. 3 =& =0.0
U-10-V =0.0,6 ~0.0 (3

The solutiun of Equation (2) and the mode of discretiza:ion o? Equation (3) with the associated boundary conditions are avarable in
Oluyede (1995) but have been onwtted here for the sake of brevity

21 NUMERICAL PROCEDURE

The thermat boundary layer thickness. B*; @t 1 = 1 0 can be estimated on the basis of mass 1ux conservation to be
Ay v i
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Where a is a constant found to be 0.3321 (Howarth, 1938) and the grid sizes along the horizontal axis are computed from the
stability criteria of equation (3) as follow;

ol j - DPr AL
2A (6)

Ny =Tt

AE =8*¢/N, i=j =2,3....N

Where A is constant greater than unity to ensure the stability of the numerical scheme and N is the number of spatial divisions on
the horizontal axis. Having determined all the grid points, the formal definition of A), is given as
Ay =Ane - Ana

Wherei= 1,2 3. N-tand 17, = 0.0 at the origin
The condition that the surface temperature varies spatially along the plate can be written, following Tawo (1891), as

(M) =Fm) LOM =0 (M) =F ) for o <M < i (N
Where € is a2 small parameter and L is an operator defined by
ad?
L=s—++1
drny

Equation (7) is perturbed using Legendre polynomial as
€07 =f(m)+Rz(m)
and

Rz () = mPy(n) + myP(n)

my, m; are constant parameters; P, and P, are the Legendre polynomials

Hence
e M =fM) +mP() +mPan) forma <n<nim (8)

AR order two approximate solution of Equation (8) can be obtained in the form

807 = 8,030 = > a O ()

i~

N
Where ax are constants and Qx(1) are the canonical polynomials which are assocrated with the operator L
— .k
LQ«m =n

Ln*=¢ k(k-1) "2+ 9

Thatis LILQu(m)] = & k(k-1)L Qw201 + LQw(m)
From the linearity of L, and the existence of L'', we have
LQum) = & k(k-1)Qu.2n) + Qi)
Hence,
Qum) = n* - € k(k-1)Qi2(m) (10)

Where k = 1, 2.
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For the above problem, Taiwo (1991} proposed a continuous scheme for the smooth varying region 1), 1 “W}< 1},+ using Legendre
polynomial as : e

(?

=—d
I
~3
o,

g =6+

(n

’

.This formula obtained the temperature profile along the surface of the plate. On the grid points. the scheme recover some well,
known discrete methods, namely the central difference approximations of order two to the derivates, the most accurate p-stable
linear multi-step of Ritchmeyer and Morton using a legendre perturbation term.

However; the discrete value B(1);+2)is obtained by collocating Equation (11) at 1} ¥ 1];4 2 with the condition 0> (1)) = 0,.:

Y

Thus
g, =8, +(A77;-1 + A8, -8 (AR AR AR M e AL L)
it2,1 i v
' ' ¢ 3 l2a
Mo =1 (12)
22  HEAT TRANSFER ANALYSIS '
The local coefficient based on the distance from the teading edge of the plate is evaluated as
el
Nu = ~Re '{[-a—*]
NI (13)
The temperature profile at any location along the plate can be expressed as a polynomial of the form,
9=0,,+A;§+ /\25_,2 (I‘”
AtE=0.0,0=0p -0;,and at § = AE, 6 = 0, for 1 <i <N. Therefore
Bi2 =051+ A AE + Ax(AE) (15)
At & = 2(AE), 8 =0, 3 Hence,
013 =0, + Al(2AE) + As[4(AE)’] (16)
Solving Equations (15) and (16) simultaneously for A and A; and substituting these vaiues in Equation (14) and then dilteréntialiryg
the resulting equations with respect to &, we have. A
[86] - (46..7 - 9:.3 + 3&.»)
% A9 | an
Hence,
NH - Re }{[36'.| ‘46“1 + Gl.‘ ]
2
2(48) (18)
Wherei= 1, 2, 3..., N and the mean Nusselt number is given by
h}u - }_ ﬂz-:l (N, + Neg, g )47
2 2=l ??,“'
(9

3.0 RESULTS AND DISCUSSION

The effect of the Reynolds number on the local heat transfer coefficient for a given set of

Reynolds number on the focal heat transfer coefficient for a given set of parameters is itlustrated in Fig. 2. It1s observed that as the
Reynolds number increases, the local heat transfer coefficient along the plate gradually increase downstream This is due to the
fact that, as the velocity of flow increases, more heat is been convected away from the surface of the plate. This result agreed welt
with that of Bello-Ochende and Obiajunwa (1990) for Newtonian flows. _ o
In Fig.3, as the Reynolds numbers increase, the average coelfficients of heat transfer along the plate increase asymptotically
downstream. There is a remarkabie effect on the average heat transfer coefficient as heat is convected rapidly from the surface of
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Fig 2. Effect of Reynolds Number on Local Nusselt Number along the plate.
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Fig. 3. Effect of Reynolds Number on the mecan Nusselt Number

the plate in fast flows than in slow flows.
An observation of Fig.4 shows the effect of the perturbation parameter on the average heat transfer coefficient As the

perturbation parameter increase, there is a remarkable decrease on the average heat transfer coefficient. As the perturbation

parameter approaches zero, the average heat transfer coefficient along the plate becomes more pronounced Figure 5 shows the

.influence of the Prandtl number on the heat transfer coefficient along the plate The increase h the Nusselt number with growing
Prandtl number changes somewhat as the heat transfer coefficient increase with increasing thermal diffusivity of the flud

in Fig.B, the effect of the local Nusselt number for various funclions describing the temperature vanation along the surface

of the plate are compared with that of the corresponding isothermal surface. Since the surface temperature increases spatially from

- the leading edge, the air stream approaching the trailing edge would have convected relatively low enthalpy from the feading edge.

hence more heat is convected at the trailing edge. This is a departure from the isothermal case where the bulk of the heat transfer

is concentrated at the leading edge Although, the isothermal case shows a higher heat transfer rate initially, the spatial surface

temperature variation shows an overall heat gain for the same set of parameters
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Fig. 4. Effect of perturbation parameter on the mean Nussclt Number.
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Fig. 5. Effect of the Prandtl Number the local Nusselt Number along the plate
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4.0 CONCLUSION

In conclusion, it is clear thal the surface vanation has a significant effect on heat transfer over the flat plate For a given set of
parameters; Re, Pr and €, a reasonable heat gain for the spatial surface temperature variation 1s indicated for the range 0 s s 10
considered.
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