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foe ABSTRACT

This wark is motivated by the appearance of heavy tails when estimating learners’ performances in most
psychological tests. Explaining this appearance of heavy tails poses a problem. Over-smoothing the target density by
using large bandwidth may tend to remove this abnormal tail behaviour, but this result in masking some essential
features in the distribution. Conversely, smaller bandwidth can result in under-smoothing of the true density and thus
gives a biased estimate of the density under study. Therefore, in any psychological test involving heavy tails, we
observe that adjustable kernel method is better for fitting this density than its fixed kernel method. However, when

heavy tails are not suspected, fixed kernel method may be easier in assessing learners’ performances.
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INTRODUCTION
Suppose X, . X,... X is a random sample

from a probabiliﬁy'function,A/'(x) Generally speaking, '

the fixed univariate kernel estimator, /(\) introduced

by Rosenblatt (1956), is given by

"

- LK)

re=t

(1.1 -

where the kernel function, k, satisfies J', k(l)dl < | and

h, the optional window width is assumed fixed all
through the process of estimation. Literally, the kernel
estimator is & sum of bumps placed at the

observation X, i = 1(1) n. The ‘shape of the bumps’ aré
determined by the kernel function k used while the

" window width h determines the width of the bumps. This

h has been seen to be more crucial than the shape of
the kernel except in some very rare cases’ see, for
instance, Harnsen (2003), Osemwenkhae and

.Ogbonmwan (2003), etc.

The primary objective of this paper is to assess
the performance of the fixed univariate kernel in
learners’ evaluation vis-a-vis the adaptive univariate
kernel estimatar focusing on target densities with heavy
tails. This work is motivated by the appearance of this
type of heavy tail density in finance, archaeology,
hydrology, genetics and astronomy, see Baxter (2000)
et al, Dinardo and Tobias (2001), Kim and Heo (2002),

- Dinardo et al (1996), etc. It is particularly necessary to

find other methads that can perform well for heavy tails
which most times is assoclated with most psychological
test (see K}me (1986, 2000)).

Section two will be concerned about the nature
and faifure of the fixed kernel method in estimating such
densities. Section three will examine briefly some other
adjustable methods and their failures. Emphasis on the
adjustable kernai method and how this method corrects ,

the failures of these other methods will be examine& n
section 4.

The Fixed Kernel Method .

The “nature” of the smoothing parameter, h, 1s
the basis for this classification. By fixed we mean, the
smoothing parameter in (1 1) is constant all through the

construction” of f from the sample values .\,

Otherwise it is adjustable or adaptive. Generally, the
fixed kernel method is insensitive to local peculiarities n
the data; such as data clumping in certain areas and
data sparseness in others.

The globa! accuracy of / can be evaluated from
the Mean Integrated Square Error (MISE) given by:

MISE f(v). E j[ 0 1) e
J-(,’fm.s-)’_/'(.\')({\‘ { J'vzu‘_/'(.\'}l.\' 21

Since the smoothing parameter h has played a vital role
in minimizing the MISE above. so many higher order
versions of (2 1) have been proposed with ther
accompanying window widths; all aimed at reducing the
global error - MISE; see Wand and Jones (1995).

The choice of kernel to use does not pose much
problem Although, for higher order window width (say,
h’. K% the work of Jones and Signorini (1997) and
Osemwenkhae and Ogbonmwan (2003), have shown
that some kernels are preferred over the others For the
second order window width, Silverman (1986) obtained
that if the kernel choice is the Gaussian and the data set
is normal or almost normai. the appropriale window
width is '

|

h,, =1.06cm

where ¢ is the standard deviation of the data set

Many methods of selecting h exist n literature
the plug in bandwidth selection method by Sheather and
Jones (1991) and Wandrand Jones (1995), free-hand or
subjective choice by Silverman (1986). cross-validation

(23)
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scheme suggested by Rudemo (1982) and Bowman
(1984), test graph method of Silverman (1978),
bootstrap choice, suggested by Taylor (1989), etc.
Among these rhethods, the least squares cross-
validation scheme is the mostly studied hecause of its
attractive asymptotic property of giving an answer that
converges to the optimum under very weak conditions —
see Stone (1984) and Marron (1993). However in many
simulation studies and real life examplies, Hall and
Marron (1987) showed that the performance of this
method has been often disappointing since it suffers
from sample variability

The work of Wand and Jones (1995, pp. 60)
however, suggested that a quick way of choosing the
smoothing parameter especially if the data is close to
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One setback of the fixed kernel method is the
fixed nature of the window width throughout the entire
process of estimation The consequence of this is the
appearance of spurious noise at the ftails of the
distribution where the observations corresponding to
either the dull or intelligent students falls (see the tails of
Figure 1c). Although over- smoothing by using large h,
see Figure 1d, may tend to remove this, but this results
in masking some essential details (like bimodality in 1a)
in the distribution.

intuitively, the larger the bandwidth - (lower
variance), the smoother the resulting estimates.
Conversely, smaller bandwidth (see Figure 1c) can
result in under smoothing of the true density and thus
gives a biased estimate of the density under study. This
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normal would be to estimate ¢ from the dala and then
substitute it back to (2.3). This only suggests the use of
a fixed bandwidth h The consequence of using this
method in {2.3) that is permitting h to be fixed in the
entire course of estimating the density of the scores of
80 undergraduate students who where given some sets
of validated psychological test {Kiine 1986, 2000} are
displayed below For this case, the sample standard
deviation is 13 03, and the optimal h corresponding to
this case is given approximately as 5 6474 (Figure 1a)
Figures 1b, 1c and 1d were obtained by multiplying
approximate h value (56474) by V. Y and 2
respectively.  This  corresponds to  choosing h
subjectively as suggested in Silverman (1986, pp4d)
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makes the fixed kernel method a ‘very bad’ estimator at
the tails of a distribution. This work would tend to handle
this pitfall.

The Adaptive Methods

Convincingly, the importance of the fails of a
distribution cannot be overemphasized, Silverman
(1986, Section 4 5) showed that m a ten-dimensional
standard normal distribution, 99% of the mass of the
distribution is at points whose distance from the origin is
greater than 1.6 of the standard normal dislribution So,
the need to have a better way of analyzing the
behaviour of densities at the tails hecomes imperative

The failure of the fixed method in estimating
densities shown above at the tails (Figures 1c and 1)
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necessitated a study inlo finding a way of handling this
This method suggests the use of a varying bandwidth
instead of the traditional fixed method of Section two.

Some adjustable methods of interest to us in
this work are the adjustable histogram, the nearest
neighbourhood, the length biased data approach and
the adaptive kernel schemes.

The adjustable histogram has been used to
provide a visual clue to underlying distribution of f, see
lzenman (1991) Suppose [ has support ) = [ab],
partition [a,b] into non-overlapping bin widths given by
I, where I (s 1,,) for i 1 (l)m and mis the

number of observations in bin /. if /(x) is the indicator
function for the i" bin, then the histogram estimator is
given as

"

/ (\) ”;’ L NI, (v)

ot

nt

(3.1)

where n Z N, is the sample size, N, is the size of the
)

ith sample
Basically, the choice of origin and the length of the bin
h,. affect its smoothing procedure. The histogram
estimator (3.1) lacks accuracy when used in cluster
analysis and nonparametric discriminant analysis, see
Silverman (1986), and also lacks continuities at celt
houndaries when derivatives of estimates are required,
see Hand (1982) Another major pitfall of the histogram
estimator is that it does not allow the drawing of contour
diagram in the representation of data and so it does not
work well in multivariate data, see Tukey and Tukey
(1981) The sensitivity of the histogram's shape o the
choice of origin is a more serious defect as slated in
Silverman (1986, pp10) and Devroye and Lugosi (1997,
2001).

Other methods of adaptive origin include the
nearest neighbourhood (NN), the maximum penalized
likelihood (MPL) and the length biased data approach
(LBDA). The failure of the nearest neighbourhood
method, as pointed out in Bowman and Foster (1993), is
the tendency for the estimators to exhibit jagged peaks,
and pitifully the complicated function of x obtained does
not integrate to 1 Fundamentally, these methods among
other things, failed to be a proper probability density
function, see Silverman (1986) and Patil et al (1991).
So, using it in a long tailed data is risky.

The Adaptive Kernel Scheme
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From Section 2, the problem of either over smoothing or
under smoothing whether at the main part or tails of the
distribution is evident. This tends to affect the variance
and bias in one form or the other In this section, we
suggest varying the bandwidth along the support of the
sample data to allow flexibility which in turn will reduce
the variance of the estimates in areas with fewer
observations, and reducing the bias of the estimates n
areas with many observations (see an earlier suggestion
in Silverman (1986), Wand and Jones (1995) and
Salgado - Ugarte and Perez Hermandez (2003) and
Sheather (2004).

The Adaptive Kernel Density Estimator (AKDE)
is obtained by modifying (1.1) to reflect and correct the
pitfall of the fixed kernel method. The Adaptive Kernel
Density Estimator method is given by

I & e X
/) nhl Z,‘ TS ]

where A, (/( X Ve ) . k() the kernel function, g the

4.1

geometric mean of 1he pilot estimates, /(\,)

corresponding to (1 1), v the sensitivity parameter and h
the window width as usual.

Many suggestions exist as to the choice of the
sensitivity parameter, o, ranging about 0 25 to 0.75, see
Silverman (1986, pp100), Kerm (2003) Nevertheless, it
is clear that if « = 1, (4 1) reduces to (11). The
sensitivity parameter together with the varying scaling

parameter, 14 . play a significant role in this process.
Here h controls the overall degree of smoothing while
A strelches or shrinks the sample points handwidth so

as to adapt to the density of the data.

This scheme attempts to investigate the lapses .
experienced by the fixed kernei method and many other
adaptive schemes especially at the tails. This in turn will
aid educational evaluators in estimating the very bright
or the very dull students which usually constitute
learners at both tails.

With the same dala generating figures 1a - d,
(4.1) is applied in estimating the density of this same
data We consider cases when « =0.5 and 0.25. Figures
2a - 2c are obtained when the above sensitivity
parameters are used (where Figure 2c is the
combination of Figures 2a & 2b).
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Figure 2c Density of 80 sludents when o = 050 and o =0 2%

DISCUSSION OF RESULTS

First, the excitement about this work is on its
inherited pattern of being a proper probability density
function (this is evident from figures 2a and 2b above}).
This is unlike most adjustable methods listed above in
Section three. Comparing Figures 1b and 1c with
Figures 2a and 2b, the spurious noise evident in the tails
of Figures 1b and 1c, occasioned by the fixed nature of
the smoothing parameter h, has been seriously handled.
Therefore, (4.1) will be a better alternative at the tails
when many observations are suspected to be around
the tails.

So, in a psychological test, where learners’
performance are independent and there is a heavy
suspicion of vefy intelligent or very dull ones
(necessitating heavy tails), a better estimation scheme
would be the adjustable kernel method considering its
huge benefits at the tails.

CONCLUDING REMARKS

When heavy tails are suspected in a set of any
psychological test, a better estimation scheme would be
the adjustable kernel method. Conversely, when heavy
tails are not suspected, the adjustable kernel method
easily decomposes to the fixed scheme if the sensitivity
parameter, a = 1.
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