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ABSTRACT

Equations of a two-phase moving boundary probiem in cylindrical coordinates are obtained from the formulation of a
transient shrinking core model of whole tree combustion in a one-dimensional steady state fixed-bed reactor. A hybrid Variable
Time and Space Steps (VTSS) method is developed to solve the non linear equations and the results are compared with those of
the literature and whole tree quasi-steady combustion model. The transient and the quasi-steady models predict respectively 45
and 41.42 min burnout times, which are quite similar to the 40 min obtained by the Research Triangle Institute (RT!) when
combusting whole tree of 10 cm radii at 33.3% moisture content. The elapsed time shown by the actual model is believe to be due
to the blowing of moisture at the combustion front inducing chilling and retarding effects on the combustion rate. In the meantime,
the same reference selected deep bed combustion of 3.65 m depth, up from an extrapolated shallow bed of 1.30 m, while the
transient model predicts a computed coal-like bed of 2.60 m. Hence, to accommodate for bigger whole tree radii and higher
moisture content, a tradeoff deep combustion bed depth of 4.50 m has been chosen. To meet the increasing environmental
requirements, whole tree boilers may become attractive either alone or co-firing with coal because biomass is very low in sulfur
content and nearly a net zero CO; generator over the long term.
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NOMENCLATURE

Ab bed cross section (m?)

An ‘ pre-exponential factor (s -! )

C pi specific heat pf component j kJ/(kg. K)
E activation energy (J/mole}

h heat transfer coefficient kJ/(m? s K)
h, heat of pyrolysis (kJ/kg)

K g permeability of the gases in the core (m ? )
K s permeability of gases in the shell (m 2 )
Lr | dry fuel rate (kg/s)

me¢ moisture content (%)

P pressure (Pa)

r radius (m)

fo initial radius (m)

R gas constant J/(mole K)

t time (s)

T temperature (° C)

T Pyrolysis {(moving boundary) or interface shell-core Temperature
\'4 " gas convective velocity (m/s)

vV, rate of shell recession (m/s)
Vi superficial gas velocity (m/s)

z bed coordinate (m)

GREEK LETTERS

€ mass fraction

s bed solid fraction

p density (kg/m”)

¢ wood porosity

u viscosity
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SUBSCRIPTS

a atmospheric

c core

d dried wood

9 gas

m moisture

s shell (external radius)
v volatile

w virgin wood
INTRODUCTION

This paper reports the second part of ongoing investigations on an actual under-fired whole tree fixed-bed, with fuel rate
totaling 56.50 ton/h (dry basis). The fuel bed with a pressure of 1 atmosphere and iength, width and depth respectively equal to
9.144, 4572 and 4.572 m, rests on a water-cooled fixed grate designed to fire a 100 MW whole tree power piant. The previous
work, Ouédraogo et al. (2000), based on the formulation of a shrinking core' model assumes the following: one-dimensional steady
state fuel bed with quasi-steady conditions prevailing in each fuel element, which shrinks and migrates through the bed with a
velocity Vr in rows of N fuel elements at a frequency of V* rows/esc, countercurrent to the preheated gas fed from the bottom, Now;

. the actual model differs from the previous due to the assumption of transient conditions in each fuel element. The logs, which are
loaded uniformly into the bed utilizing large crane, are then believed to go through overlapping phases of heating, pyrolysis and
combustion. Consequently, three distinct layers are formed: the burning char layer, the dried pyrolyzing layer and the core layer,
separated by two interfaces or moving boundaries together with the external receding combustion front To simplify the model,
however, it can be assumed that the pyrolysis layer is so thin that it may be neglected, F:gure 1.

Z=0 L

Combustion front

Pyrolysis or drying front
/ Char Layer b(t) = rs-re
|

Figure 1: Whole tree fuel combustion model

The objective of the study is to upgrade the resuits of the quasi-steady model thus, providing better whole tree combustion
data of fuel burnout time, combustion depth and fue! temperature as funiction of fuel properties and flow characteristics, for a better
estxmate of boiler wood heat release rate and efficiency.

THE BED UPPER REGION SUBMODEL : HEATING AND PYROLYSIS
The upper region goes from the bed inlet (z=0) down to the plan z=z p where the first char layer is formed. The whole tree

element assumed to be at uniform ambient temperature is loaded into a continuously operating countercurrent fixed-bed. The fuel
element is also assumed to be made of fixed carbon (shell), active matter that pyrolyzes to volatile gases and moisture, which
phase-changed to water vapor. The model is developed with the understanding that there is no viscous dissipation, wood thermal
conductivity is taken constant and only radial movement of moisture and volatile gases occurs. Each phase represents a continuum
governed by conservation laws and hence, (Whitaker, 1977), a single governing equation may be achieved which is valid
throughout all phases by phase averaging;, consequently, the phase averaged solid energy equation is governed by

aT ., 0T 10 aT
eC +eC +e C )—+p e C V —=-—(K —)-Q @
¢p w ( 5 ps v pv m pm ) at pw ‘ m pm & ar r 61‘ ( w 8r ) Q )

Q=¢_(p, —p,)1-d)hpc A  exp(-E, /RT) ;(AertaD. J. etal. 1990)

The steady state gas energy equation is approximated as

g 4. dT

Y Kig* pAan(Ty Tr.0) v ‘2’
/
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The conservation of mass equation is modeled as follows, (Dinwoodie, 1997).
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p, =S, (I1+mec)p,

While, the momentum equation is given by the Défcy‘s law, that is

kgc
V, === VP,(r)
g

where the pressure is taken to be saturated vapor pressure. The above set of equations is subjected to the following initial and
_ boundary conditions

T(r,t=0)=T, | - 0<r<r,

a e t$ 0
Olw
wgf ~h(T “Teot)) t$ 0

At the end of the heating and pyrolysis process (z*zp and t=t), a char layer of thickness b (t = t, ) is formed surroundmg a core or
virgin wood of radius I'_ , figure 2a.

Char Layer b(t) = ry - r¢

v'f. ..

SOLID PHASE MODELING: SHELL COMBUSTION
At this point of the bed (z = z p ), the combustion conditions prevail i.e.: fuel, adequate oxygen concentration and inignition

temperature exist. Hence, the combustion of the shell layer begins and takes place at constant density. The volatile gases' and the
water vapor leaving the drying and pyrolyzing core, convect through the porous shell into the bed environment. Heat is generateéd
only by glowing combustion at the shell-gas interface. Hence, the phase averaged solid shell layer energy equation is written as

T 16 oT .
C n K, — (3)
¢0.Cpn P T ror or ’
The convective boundary equation at the combustion front (I' = I, ) is modeled as
oT.|.
p.(V.eh +aV,e h )+h(T, - T (r=r,t) =»K‘3ri tot,

r=r,

where h and V, have been correlated previously (Ouédraogo et al., 1998). Here, the gas#s convect at a much higher velocity.

Since there is no moisture inside the shell layer, the vapor pressure P(r) is not sutured and is modeled as shown

P(r)=P, +(P, - P, )% ()

$ [+
where Pg and Pa . the inner and outer limits of the actual pressure, are respectively the saturated vapor pressure and the
atmospheric pressure. Finally, at the core-shell interface, the temperature is prescribed and is equal to the interface or moving

boundary temperature T
T(r=r,t)=T tot,
THE DRYING CORE
A fraction of the heat generated by the combustion and the moisture evaporated by the pyrolysis, propagate inward,

together, they not only further dry and pyrolyze the core which is made of virgin wood, but also increases the core temperature and
pressure (effect of cooking). The set of conservative equations in the core is similar to the heating equations (1) and hence, will not
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be repeated However, the initial temperatures are given by the core temperature profiles at the end of the heating process. As
for the boundary conditions, we have zero heat flux at the logs midplane and prescribed temperature at the core-shell interface,
“that is:

rrc(r:rcvt):Tq(r:r;:s‘t):,r. . I¢I[

EQUATIONS OF THE MOVING BOUNDARY

This equation is obtained by performing an energy balance at the core-shell interface

oT oT
K *-K C=-p reh 5)
s ar w ar pw c sy (

Where — I, = Vc is the core recession velocity and h » the heat of pyrolysis, neglecting the heat of evaporation of moisture and

its effect on the propagation of the pyrolysis wave. Relation (5) is a moving boundary equation since the shell-core interface
changes its position continuously due to pyrolysis with the subsequent phase-change of the active matters (shell) and moisture
(core) respectively to volatile gases and water vapor. The core and shell temperatures are different throughout, hence, the problem
is a two phase-change or a two-phase moving boundary problem. sometimes referred to simply as “Stefan problem”, figure 2b and
2¢.

r=0 core r sheli r,
| 1K i
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i=0 i=N P=M
{2b)
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b(n) p(n+1)| T (N+1<i <M)
=N re(n), T,
Y re(n+1), T
v
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rs(n), Arg(N) |
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Figure 2 : Computational domain
SIMPLIFIED GAS PHASE COMBUSTION

The products of the incomplete combustion at the char-gas interface, CO for the most part, and the fraction of the volatites
that may have escaped earlier in the combustion now go into complete combustion in the gas phase. The preheated air with
maximum prescribed concentration at the bottom of the bed moves in countercurrent to the flow of solid fuel. Since the steady state
conditions prevailing in the bed have been modeled previously (Ouédraogo et al., 2000), these equations will not be repeated here

VARIABLE TIME AND SPACE STEPS (VTSS) SOLUTION OF THE MOVING BOUNDARY PROBLEM

The set of equations to be solved are nonlinear due to the nonlinearity of the governing equations and boundary conditions
and their solutions can be obtained by numerical finite difference methods. The flow problem can be decoupled from the

temperature problem so that the radial velocity Vg becomes an input to the energy equation. Using the Combined Crank-Nicolson

(CCN) method, the discretization of these equations i1s straightforward and sample calculations are given in the appendix.
Assuming that the vaiues of the coefficients of the temperatures are available and chioosing appropriate constant time step and
initial temperatures, the determination of the fuel unknown temperatures and shell thickness at the end of the heating and pyrolysis
process (equation 1) are done by using the CCN scheme. Now, this scheme alone is not sufficient for the determination of the core
and shell temperatures; figure 2 shows clearly the two subdomains. While the discretization of their respective equations is similar,
the time step, however, is not constant anymaore and must be obtained by discretizing equation (5} as follows:
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p. e h Ar
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t —t = At
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(6)

The bed grid size is inferred from equation (6) as
2
Lr r

- ———— 7
SETAYCN PN "

Azy ::Atn[(* I

As can be seen, the bed grid size is dependant on the time step of the moving boundary and therefore, the VTSS is a
hybrid method. To handle the moving boundary problem, various techniques and numerical schemes have peen reported in the
literature by many investigators, a classification of these methods can be found in the book by Ozisik (1994). Here however, a
maodified version of the Variable grid methods called Variable Time and Space Steps (VTSS) method is presented for solving the
"Stefan problem". Under the previous methods, such as those by Murry and tandis (1959), Douglas and Gallie (1995) and Gupta
and Kumar (1981), usually a plane geometry domain "x-t" is subdivided into equal interval in one direction only, the other grid size
being determined so that the moving boundary always remains at a gnd point. In the actual method, each subdomain of figure 2
{core and shell) is divided at the beginning of the combustion process into equal intervais in space only by fixing the number of grid
points, N and M respectively. Therefore, their mesh sizes change as the interface and the external boundary move, figure .2 c. The
following relations summarize this approach during one time step:

Corer. (0 n < 'N-1) shellrg  (N+1 < n < M)
At L,
Core: I (n) = NAr (n) and Arc(n)= re(n)/N
shell: b(n) = M Ar(n) and Ars(.n) =b(n)/M
Att
Core: r (n+1)=r (n)—Ar.(n)=NAr (n+1)and Ar, (n+1)=r (n+1)/N
shel: b(n+1)=r(n+1)-r(n+1)=M Ar(n+1) ana Ar(n+1)=b(n+1)/M
Where ', (n + 1) is inferred from the iteration of the shell recession velocity Vs
r(n+l)-r(n)
Aty

Next, the time step At. is obtained such that both the moving boundary and the external receding combustion front remain each

at a grid point. The determination of the temperature profiles at ({ .1 ) 18 done given the previous temperature profiles (ln ). that

vin) =

AN

[1o(OKIEN=-D A+ Atn+1)]  — [ 12 (0<iEN=1).Ar(n).Aln)|
[ 1o (N+ISISM) Ar(n+1),Atn+1)] = | 18 (N+IiSM)Ar(n).At(n)|

RESULTS AND DISCUSSIONS

At the end of the heating and pyrolysis process, solved solely with the CCN discretized equations, a dried pyrolyzing layer
ot thickness equal to 6 mm is obtained, figure 1. Now, for the combustion of this layer, which is the second process, figure 2, the
VTSS method, is used, that is, the CCN and the moving boundary discretized equations together with the constant thermal
properties Table |
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TABLE | : Constant thermal properties

Properties Values Units References
Am 1.08 x 10’ sec’ Chan, R et al.
Cops 0.670 kJ/(kg-K) Hsiang-Cheng et al.
Cpv 1.1'0 . kJ/ikg-K} Hsiang-Cheng et al
En 5.60 x 10 J/mol Chan, R et al.
hpca 2250 kJlkg
Hs 31,100 . kJ/kg Hsiang-Cheng et al
Ks 041 x10 . kW/(m-K) Hsiang-Cheng et al
Kw 1.254 x 10 o kW/(m-K) Hsiang-Cheng et al.
Kge 56.0x 107 /5.00x 10" m? Fredlund B.
Kgs 15.0x 10" /12.0x 10 m?* Fredlund B.
Pg 95 kg/m® Ragland et al.
¢ 0.45 - Aerta et al.
g 381x10°/40.0x 10° kgm " sec’ Fredlund B.

o
* best fit

During the combustion of the solid fuel elements, their radii shrink from r, at the boiler inlet to rr (95% of o) when they fall
through the fixed grate grill holes into the ash pit. Of particular importance for wood boiler furnaces design are the burnout time (t,)
and the combustion zone depth (zp), which are respectively, the logs actual residence time and their vertical traveled distance
inside the bed, which corresponds to the shallow bed depth.

As expected and for the two models, these characteristics are shown to increase first, moderatety at low moisture content
and small fuel radii, then quite faster when these properties become large, fuel radii being more sensitive to the variations than their
moisture contents do. For small whole tree radii, 7.5 cm, the burnout time and bed depth are approximately constant, independent
of model type. Now, direct comparison indicates that retarding effects due to moisture content on the burning rate are more
pronounced with the transient model. With whole tree of 15.24 cm radii at 25 and 40 % moisture contents, Table Hl data indicate
burning rates ranging from 2.08 to 1.86 and from 2.01 to 1.65 mm/min respectively for the quasi-steady and the transient models,
showing a retarding coefficient of 1.6

TABLE Il . The burnout times (s) of the two modeis

me (%)
fo (M) 25 30 333 40
Steady Transient Steady  Transient Steady  Transient Steady Transient
State State State State
0075 23.88 23.69 24.88 25.46 - 2552 . 2716 2680 28.80
01016 38.86 39.30 40.42 42.42 41.42 45.09 43.50 4812
0.1524 7324 75.52 76.10 80.81 78 00 85.93 8192 9238
02032 11526 11891 119.76 . 127 96 122.74 135.99 12890 146.35
0.2540 163.86 169.25 17020 182.04 174.45 193.99 183.20 209.29

Unfortunately, there are few modeis of large wood combustion models in the literature; most models deal either with kinetics of
wood pieces or with fixed-bed gasifier. Ragland et al. (1998) reported a model results of 0.075 m radius chunk wood combustion;
they were predicted to burnout in 32 min at rate of 1.8 mm/min, function of fuel radius but independent of initial moisture content.
The same paper indicated, however, a calculated char layer thickness respectivély equal to 6 mm and 10 mm for green and air-
dried wood after 5 min in furnace, implying moisture dependence. As a matter of fact, Mardani et al. {1993), found moisture content
to increase the ignition time of wood due to the energy used to evaporate additional water. In addition, another retarding factor is
the chilling effect of moisture due the blowing at the combustion front, Ouédraogo et al. (1998), which abates the combustion
temperature, hence slowing down the burning rate. This phenomenon, which increases with moisture content and not taken in
account by the quasi-steady model, may explain the burnout time difference of the two models. Utilizing the best combustion
models available to extrapolate for larger wood and higher moisture contents, and data from the actual water-cooled fixed bed, the
Research Triangle Institute (TRI, 1991) reached a compromise burnout time of 40 min, for whole tree of 10 cm radius and 33.3 %
moisture content, which is quite simitar to the results of these models (41.42 and 45 min, Table It). For the fuel bed, the RTI found
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an extrapolated shallow bed of about 1 30 m and compromise deep bed combustion of 3“65 m depth based on whole tree tests
results conducted at Bay Front and St John's (cited by RTI). Those are qu:te similar to the fuel bed ranges predicted by the two -
models, Table lil. .

TABLE Il : The bed depths (m) of the two models

mci (%)
o (M) 25 30 333 40
Steady Transient Steady Transient Steady  Transient Steady Transient
State State State State
0.075 1.88 1.41 1.96 1.51 2.01 1.61 210 169
0.1016 3.07 2.30 3.19 2.46 326 2.60 KIS 274
0.1524 578 4.34 6.00 4.60 6.14 4.84 6.42 5.08
02032 910  6.80 9.44 720 9.66 756 1010 7.94
02540 1293 9.65 13.41 10.20 13.72 10.72 14.35 11.23

As a matter of fact, the 3.26 m of the quasi-steady model is that of deep bed combustion, that is, the logs are let to shrink
up to 99% of initial radii, while the reported 2.60 m of the transient model represents only 95 % of initial shrinking radii, the fuel

mesh size becoming too thin (Ar =10"%m) for the computation to proceed. Hence, a tradeoff value of 4.50 m deep bed
combustion has been selected based on data of the transient modei and the compromised model of the RTI.

Now, a heat of pyrolysis of 84 J/g was computed as a best fit for the variable time step, Wai-Chun R Chan et al. (1985)
repoﬂed that, the heats of reaction for wood thermolysis are not well known and have been observed to range from - 418 to + 418
kag
With the advent of environmental pollution control, whole tree boilers may become attractive either alone or preferably in co-firing
with coal. The energy density and low heating value of biomass fuel require, however, that relative to coal, the combustion area be
oversized for deep bed combustion. Because biomass is very low in sulfur content and nearly a net zero CO; generator over the
long term, it can displace the energy supplied by coal while reducing emissions. According to Edward E. Gray (1991), if a unit was
required to cut its SO, emissions by 15 % or voluntarily agreed to reduce CO; emissions the same amount, the unit could co-fire
roughly 15 % biomass (on a heat input basis) and'85% coal to meet the restrictions.

CONCLUSION

At moderate moisture content and relatively small radii, the two models show similar burnout time and combustion bed
depth. For these sizes, the whole tree-shrinking rate is quite constant as stated by Ragland et al. (1998). But the influence of these
properties over the whole tree combustion characteristics becomes sensible especially with large wood radii and higher moisture
content. As a matter of fact, the migration of the inner moisture up to the external surface is function of the localization of the
combustion front and its temperature; the energy require to evaporate the moisture increases with moisture (Mardini et al.) as does
the blowing, with chilling and retarding effects on the combustion front. Hence, a retarding coefficient approximately equal to 1.6
has been observed between the two-burnout times. Taking in account the comparatively low heating value of wood, a bed deep
combustion of 3.65 m depth has been selected by the RT!, up from computed shallow fuel bed of 1.30 m. In the meantime, up from
a coal-like fuel bed of 2.60 m depth, oversized deep bed combustion of 4. 50 m depth has been chosen usmg the transient model in
order to guaranty adequate combustion of bugger whole tree radu and higher moisture content.
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APPENDIXES: DISCRETISATION OF THE MODEL EQUATIONS

Let's write the general form of the diffusion equations (1 and 3) as follows:

opCy I ZL=L2 ik IrQen) ®

CCN DISCRETIZED EQUATIONS

Internals nodes

In figure 2 b, the internal nodes are respectively ITi<N—] and N+I<i<M-| for the core and shell regions; i=0 needs
a special treatment because of the singularity problem and will be addressed latter. Applying the simple explicit forward differencing
for the time derivative, the upwing and the central differencing schemes to discretize respectively the convective terms and the
second order derivatives, the following finite difference approximation of the general diffusion equation is obtained (9a).

AtOMT")  AO(rK) ,, AtO(rK),,, ., At@(rMK)M,/ At@k_(T")] onel

[E¢pcp)w onC ) ar T GgeC A T wenC,) a e A

__f}t—Q—(l;K)ma-,.,,”:IAt(]‘igﬁ)ﬂ}\'(T”) 4?(],,,,,,0)“’(%‘[ NTE At(1-0)(1K),,, ,
(ropC ) Ar’ (dpC ), Ar (ropC ), Ar ! r(bp(p)iAr

OO, MOZORID) MOy Ny
(r¢ppC ), Ar’ (¢pC,), Ar ' (rgpC ) Ar T (9pC)),

The weighted factor O is set equal to 0.75. A more computational form of equation (Sa) is written as:
n+t n+l el N . n ~ gl
AITIA| +Bl"l"l +C| l |¢I:D|"[|-I+E|Tv +P|’-[H]+(*Nﬁ )dr] ) | (gb)

Convective boundary nodes )
The convective boundaries at the external surface (r = r, or I' =TI ) of the whole tree elements, using the general

diffusion equations (8) are evaluated as:

Pl or 10 oT | .
C = AT~ == (1K — +Q(T (10)
opC, El . ( orl, r (7r( or )i\ QA )} 4
Expanding, collecting terms and equating K (/ ‘ respectively to the convective boundaries relations of equations (1) and (3), that
is
K%.I. :h(Tg ~T(r.1) or ((le “[pw (Vgtghg ou\(, S l‘, STe(r. t))]I
0 'S
Then, discretizing the final relation as before and utilizing a fictive node inside the bed gives.
KO .. 2ALKKO 2A1K ‘
[1 + ZA'. ‘‘‘‘‘‘‘ - ]'n+| _ _“AAA . n ] ._ Il L e (] _ O)l] n
opC, Ar’ opC, Ar’ opC, Ar
an
2ALK At 2 7»(T,") - o
()T )[(( )+ == TR+ QT
opC Ar? opC, Ar K

i

Where the index | identifies the boundary node and 1 — | the internal nearest node. while 3(’[‘;’) represents the respective

convection boundary.

Centerline nodes
Since the same boundary conditions are applied to the external surface of the whole tree elements, the diffusion equation

{8) is symmetrical about r=0. The finite difference equation 1s not applicable at this particular location because of singularity
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problem Making use of the symmetry boundary condition, the discretization of the appropriate expression is straightforward
and yelds the temperature at i=0, 1.e

4MOK . 4AOK 4AL(1 - O)K

14 Oy SAOR gy 2AUZOR

; ¢pC, Ar ¢pC Ar’ ¢opC, Ar°
, (12) -
° | 401 - O)K LAt
T, Q(T; )
opC, Ar? ¢C .
MOVING BOUNDARY DISCRETIZED EQUATIONS
Moving boundary nodes
The interface (i =N), although moving has a prescribed temperature T ' and therefor;e is-a boundary for both the shell an&

the core, figures 2 b. Applymg equation (8b) to the core and shell nodes is straightforward, an the-temperature expressions for the "
nearest nodes at the interface are obtained (equation 13 a for the core and 13 b for the shell):
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Variable time step
The time step of the moving boundary is obtained by discretizing equation (5).

p,&e,h Ar’
tn - trnl = Atn n+i n+l . ‘ (14)
K [T Tc, N-1 - KS[TS.No-I - T ]
The core recession velocity is inferred from equation (16).
= 1 . n+ n+ *
Vc = _[ ][Kw (T Tc N, 1) K (Tq Ml” - ) (15)
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Variable space step

The whole tree migration velocity inside the bed has been modeled by Ouédraogo et al. (2000)

_dz_ (' )2 k
V¢ (16)
F=dr (Iwmc)(pW ApPg)
where A} is the bed cross section; the bed grid size is then obtained as
- Lr ( r y )
Az =At : (17)
k [( l-mc)p,, Ap®s) o ]

As can be seen, equation (17) shows the dependence between the time and space steps; hence the VTSS is a hybrid model.



