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ABSTRACT

This. study used the Monte—Carlo method to investigate the performance of five estimators: Ordinary Least Squares
(OLS), Cochrane Orcutt (CORC), Hildreth Lu (HiLU), Maximum Likelihood (ML) and Maximum Likelihood Grid (MLGRID) in
estimating the parameters of a single equation linear regression model in which the autoregressive independent variable is also
correlated with the autoregressive error terms.

The simulation results, under the finite sampling properties of Bias, Variance and Root Mean Squared Error, show that all
estimators are adversely affected as autocorrelation coefficient (p) is close to unity. In this regard, the estimators rank as follows
in descending order of performance: OLS, MLGRID, ML, HILU and CORC.

The estimators conform to the asymptotic properties of estimates considered. This is seen when the level of autocorrelation is mild
(ie. p < 0.8) at all significant levels. The estimators’ rank in decreasing order in conformity with the observed asymptotic
behaviour as follows: OLS, HILU, MLGRID, CORC and ML. Most of the criteria used in studying the refative performance of the five
estimators have not exhibited any remarkable sensitivity to the number of replications. Increasing the number of replications has
tended to confirm the stability of the study.

The results also suggest that OLS should be preferred when autocorrelation level is relatively mild (p = 0.4) and the regressor is

significantly correlated (at least at 5%) with the autocorrelated error terms. .
This result helps in the choice of estimators in empirical work when the regressor and the error terms are not well behaved. It also

allows correct inferences in linear models plagued by autocorrelated disturbances, which are also signifi cantly correlated with the

independent variable.
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1. INTRODUCTION

Consider the standard classical statistical linear
regression mode!

Y=Xp+U

. (1)
where Y is a (N x 1) vector of observations, X is a known (N x
K) non-stochastic design matrix of rank K, [ is a (K x 1) fixed

vector of unknown parameters and U is a (N x 1) vector of
unobservable random variable with zero' mean and finite
covariance matrix. When the error terms follow a first order
autoregressive (AR) process, we have:

U =pU_ +é, lo|<1, & — NID(0,0?),

o’
1-p?

Assumptions in the classical normal linear regression
model include that of lack of autocorrelation of the error terms
and the zero covariances between the independent variable
and the error terms. This paper examines the estimation of
the parameters of the linear models when the above two
assumptions are violated.

These violations are seen in widespread applications
.in operations research, like in queuing theory and
econometrics, where the usual assumption of independent
érror terms may not be plausible in most cases. These
violations are also observed when using time series data on a
number of micro-economic units, for example, households;
‘and also in service oriented channels, where the stochastic
disturbance terms in part reflect variables which are not

U, N[O,

- included explicitly in the model and which may change slowly

over time'’. Cochrane and Orcutt® have shown that the error
terms in most current formulations of economic relations are
highly positively autocorrelated. Rao and Griliches®™ have
shown that there is much to gain and little to lose by
considering alternatives to the independent error assumption
of the classical linear regression model.

Many models with autocorrelated error terms have
been discussed in the literature. These include the works of
Anderson’, Cochran and Orcutt® , Durbin and Watson®"®, Rao
and Griliches® Beach and Mackinnon?, Kramer'>', Busse.
Jeske and Kramer Kramer and Hassler1 Nwabueze”.
Kleiber'?, Kramer and Marmol’®, Butte® and Otaomi’®. Tests
for detecting the presence of autocorrelation and alternative
consistent methods of estimating linear models with
autocorrelated disturbance terms have been proposed.
However, in spite of these tests and estimation methods, a
number of questions in connection with the estimation of the

" classical regression linear model with autocorrelated error

terms and non-zero covariance between the independe_r\t
variable and the error terms remained unanswered. These
include the most appropriate estimation method in the above
named specification of the independent variabie, the effect of
the degree of correlation of the disturbance term, the effect of
the degree of correlation of independent variable and the error
terms, the effect of replications and sample size and the
sampling properties of the various estimation methods.
The answers to most of these questions wouid aliow for
correct inferences to be made in linear models plagued by: the
scenario depicted above.

© The rest of this paper discusses the methodology, the
model and the data generation procedure in section 2, section
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3 presents the simulation. results, and section 4 presents the
discussions, while we conclude in section 5.

2, METHODOLOGY

This study used the Monte-Carlo approach for the
investigation due to the fact that real life observations on
economic variables are in most cases plagued by one or
several of the problems of non-spherical disturbances (a
problem where the disturbance term U in any period is
correlated with any other value U in the series, that is, serial
correlation of the random variable U), measurement error and
specification error. Also when the covariance between the
independent variable and the error terms 1s non-zero, the
problem is near intractable by analytical procedure.

The following four Generalised Least Squares (GLS)
estimators {Cochrane and Orcutt (CORC), Hiidreth and Lu
(HILU), Maximum Likelihood (ML) and Maximum Likelihood
Grid (MLGRID)} and Ordinary Least Squares (OLS) estimation
methads, choosing in the light of the previous studies, are
used. These estlmators are equivalent with identical
asymptotic propemes But in small samples, such as in this
study, Park and Matcheli " have argued that those that use the
T transformation matrix (ML, MLGRID) are generally more
efficient, in terms of estimation of the parameters of the model,
than those that use T* transformation matrix (CORC, HILU).

The degree of autocorrelation affects the efficiency of
the estimators'’. Consequently, we investigated the sensitivity
of the estimators to the degree of autocorrelation by varying

tho (p) from 0.4, 0 0.8 and 0.9. We also found out the effect

of the correlation of the independent variable and the error
terms at significant level (a) 1%, 2% and 5% on the estimators.
The effects of sample size (N) and replication (R) on the
estimators were also investigated by varying the sample size
from 20, 40 to 60 each replicated 30, 40 and 50 times.
Evaluation of the best estimator(s) was then done using the
finite sampling properties of Minimum Bias (BIAS), Minimum
Variance (VAR), and Minimum Root Mean Squared Error
(RMSE).

2.1 THE MODEL

We assume a simple linear regression model:

Vo= py+ BX +U, (2)
U =pU._ +¢, lpl <1,

X =X_+V, V,>N0O]) 1=08

U s>No-Z | x o ..f’,l‘,],
- Y

t=1,2, . N, f=(11)

where Y: is the dependent variable and the first order
autoregressive X is the independent variable with U, also
autoregressive of order one. g and Vi are standard normal
 distributed. p and A are stationarity parameters while the
model parameters are assumed to be unity. Sp|tzer2
“Nwabueze'’ and Olaomi'® had used this independent variable
specification. It is chosen to allow for comparison of resuits.

2.2 DATA GENERATION

A total of 81 data sets spread over three sample sizes
(20, 40 and 60) and three replication numbers (30, 40, and 50)
were used in generating the data for this study. Using model
(2), a value U, was generated by drawing a random value .

from N(0.1) anddividing by /(1 — p“J) Successive values of

g drawn from N(0,1) were used fo calculate U. X was
similarly generated. Correlation between U, and X, was then
computed and its absolute value tested for significance Bt say
1%. |If this value is significant, it is chosen, otherwise 1t is
discarded. This procedure is repeated as many times as are
necessary to obtain specified number of replications for a
desired autocorrelation level, significance level and sample
size. Y, is thus computed for the chosen U, and fixed X; using
equation (2). The computations are made using the Exce!
package; different estimation methods are then applied to the
data using the AR procedure of the TSP? package

3 SIMULATION RESULTS

The finite sampling properties of estimators we used
include the Bias (BIAS), Variance (VAR) and the Root Mean
Squared Error (RMSE).  Additionally. we caiculated and
displayed the Sum of Bias (SBIAS), Variances {SVAR) and the
Root Mean Squared Error (SRMSE).

The results are summarized for SBIAS, SVAR and
SRMSE as shown in Tables 1, 2, and 3 respectively for
sample sizes 20 and 60 replicated 30, 40 and 50 times each.
(The result for sampie size forty (N = 40) is omitted for page
constraint, though, it is used in the explanation of results)

In the discussion of the results, attention 1s focused
on comparison 3of the following attributes of the estimates
yielded by each of the five estimators:

(i) the sum of the bias of the two estimated parameters
(SBIAS) with particular emphasis on sensitivily of these
magnitudes to , p, Rand N, and

(ii) the sum of variances and the sum of the RMSE of the
estimates also with emphasis to their sensitivityito «, p, R and
N as n (i) above.

Observing the trends followed by the estimates as «
and p varies, for each of Bias, Variance and the RMSE, it
could be observed that all estimators are adversely affected as
autocorrelation coefficient (p) is close to unity when the
regressor is significantly correlated with the error term. This is
evidenced by the optimunt{i{p, «) combinations of (0.4, 0.01) as
p increases and (0.4, 0. 05) as « decreases using both the
Variance and the RMSE criteria while the Bias criterion give
the optimum combination of (0.8, 0.05) with minimum
occurring at p=0.8. There is absence of the combinations (0.9,
0.01), (0.9, 0.02), (0.9, 0.05), (0.8, 0.01) and (0.8, 0.02) which
shows that the estimators perform less as p - 1.

The performance of the estimators rank as follows in
descending order based on trends of Bias, Variance and
RMSE: OLS, MLGRID, ML, HILU, and CORC.

We also investigated the asymptotic behaviour of the
estimators in our expenment (i.e. as N increases). The five
estimators rank as follows in decreasing order of conformity
with the observed asymptotic behaviour of Bias, Variance and
RMSE: OLS. HILU, MLGRID, CORC, and ML.

in most Monte — Carlo studies, magnitudes such as
bias, vdriance and root mean squared error are not usually
remarkably sensitive to the number of rephcatlons We did not
assume this a priori; hence the possible effects of different
numbers of replication on these magnitudes are mvestlgated

The five estimators rank as follows in decreasing
order of conformity with the observed replication effect of bias,
variance and RMSE: OLS, CORC, ML, MLGRID, and HILU.
The results of replication effec:t suggest that the behaviour of
bias, variance and root mean squared error are remarkably
less sensitive to replication numbers than sample sizes. Also,
the optimum trend occurred at the same replication number 50
for bias, variance and RMSE, which suggests that the
replications actually confirmed the stability of our results.
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Table 1: Sum of Absolute Bias for Estimators of B for N=20 and N=60 (All replications)
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s.gnm‘c‘anT‘ Estimator | p = 0.4 p =08 - =09
Level N=20, N=20, T N=20. N=20, N=20, T N=20, N=20, | N=20. N=20,
R=30 R=40 R=50 R=30 | R=40 R=50 R=30 R=40 R=50
oLS 2.00672 | 2.01345 | 2.001397 | 2.019522 | 2011611 | 1.979407 | 1.94924 | 1.976075 | 1.945679
CORC 2.009557 | 2.007646 | 1.98372 | 2.099689 | 2.085352 | 2.117686 | 2.007161 | 1.983825 | 1.969557
0.01 {HILU 2.010673 | 2.009382 | 1.985357 | 1.971174 | 1.989489 | 2.05607 1821298 | 1.797405 | 1.786586
ML 2.002887 | 2.000204 | 1.99943 | 1.954783 | 1.949677 | 1.970245 | 1.965999 | 1960984 | 1.990792
MLGRID | 2.002931 | 2.009446 | 1.99984 | 1.046327 | 1.944887 | 1.939896 | 2.047327 | 2.04501 | 2.020209
OoLS 2.035417 | 2.027578 | 2.012331 [ 0058988 | 0.087823 | 0.053624 | 2.100742 | 2.102724 | 2.088479
CORC 2.071447 | 2052589 | 2.05112 | 0.044664 | 0.072496 | 0.038231 | 2164015 | 1.85121 | 1.850582
0.02 HILU 2.018253 | 2.023326 | 2.027572 | 0.069359 | 0.101422 | 0.061715 | 1.995361 | 1.938694 | 1.980895
ML 2.002364 | 1.985979 | 1.971339 | 0053895 | 0.077344 | 0.050747 | 2.01348 | 1.975195 | 1975273
MLGRID | 1.989597 | 1.089994 | 1.992195 | 0.088088 | 0.102886 | 0.092551 | 2.059795 | 2.019704 | 1.998286
oLS 1.999429 | 2.003305 | 2.000829 | 0.0561496 | 0.0334392 | 0.0664662 | 2.049742 | 1.968029 | 1.982158
CORC 1.979828 | 1.983376 | 1.994258 | 0.1011124 | 0.2348154 | 0.1686729 | 2.082196 | 2.082721 | 2.089437
0.05 HILU 2.003201 | 2.001 2.008555 | 0.088639 | 0.0888913 | 0.0529243 | 2.010138 | 2.032735 | 2.104394 |
ML 1.985907 | 1.993163 | 1.995076 | 0.087603 | 0.025485 | 0.0056 | 1.966716 | 1.922508 | 1.947758
MLGRID | 1.987827 | 1.994408 | 1.996452 | 0.105352 | 0.0893324 | 0.0565083 | 1.980556 | 1.938704 | 1.966893 |
Significant | Estimator | p = 0.4 p =08 p =09 -
Level N=60, | N=60, | N=60, | N=60, | N=60. | N=60. N=60, | N=60, | N=60,
R=30 R=40 R=50 R=30 R=40 R=50 R=30 R=40 R=50
oLS 001296 | 0.01045 | 0.02452 | 0.020918 | 0.016128 | 0.009589 | 0.091205 | 0.072217 | 0.072096
001 CORC 0.05750 | 0.04417 | 0.04124 | 0.017076 | 0.020482 | 0.007208 | 0.037332 | 0.011274 | 0.024551
HILU 0.04027 | 0.03354 | 0.0327 0.017481 | 0.00989 | 0.0025244 | 0.09573 .| 0.06727 | 0.06797
ML 0.06080 | 0.04544 | 0.04065 | 0.033145 | 0.015499 | 0.015663 | 0.045336 | 0.057495 | 0.086133
MLGRID | 0.03861 | 0.02787 | 0.0273 0.029097 | 0.012525 | 0.031493 | 0.018391 | 0.043605 | 0.046388 |
OLS 0.00211 | 0.001035 | 0.001623 | 0.026568 | 0.012778 | 0.008910 | 0.04865 | 0.06253 | 0.06218
0.02 CORC | 0016565 | 0.010162 | 0.011069 | 0.025391 [ 0008719 | 0.014044 | 0.253943 | 0.217335 | 0.194355 |
; HILU 0.015469 | 0.009561 | 0.010425 | 0.016038 | 0.012195 | 0.01728 0.070292 | 0.061384 | 0.024102
ML 0.008936 | 0.00884 | 0.005808 | 0017933 | 0.018277 | 0.02101 | 0.180547 | 0 113496 | 0.040749
MLGRID | 0.041458 | 0.026908 | 0.024178 | 0.02666 | 0.013897 | 0021114 | 0.153787 | 0.098974 | 0.046591
oLs 0.002809 | 0.003382 | 0.003315 | 0.020296 | 0.026675 | 0.007642 | 0.064927 | 0.038539 | 0.034141
008 CORC ] 0.013529 | 0.01119 | 0.00572 | 0.05402 | 0.07636 | 0.0602 0.124921 | 0.023225 | 0.026179
HILU 0.016459 | 0.014448 | 0.017928 | 0.0513 | 0.07616 | 0.06263 0.145867 | 0.062353 | 0.051439
ML 0.015143 | 0.009646 | 0.010106 | 0.065352 | 0.085669 | 0.067492 | 0.180878 | 0.121945 | 0.068846
| MLGRID [ 0.014375 | 0.008302 | 0.009429 | 0.044863 [ 0.067861 | 0.072527 | 0.150453 | 0.093332 [ 0.055344
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Table 2: Sum of Variances of Bias for Estimators of 8 for N=20 and N=60 (All replications)
Significant | Estimator ( p = 0.4 ) p =08 p =09
Level
N=20, N=20, N=20, N=20, N=20, N=20, N=20. N=20, N=20,
L R=30 =40 R=50 R=30 R=40 R=50 R=30 R=40 R=50
OoLS 0.2917708 | 0.2770682 | 0.2600066 | 0.7306049 | 0.6730976 | 0.6360087 | 1.2950126 | 1.2009676 | 1.1410226
0.01 CORC 0.2831761 | 0.2656922 | 0.2505263 | 0.8270936 | 0.6898761 | 0.6527618 | 1.0194169 | 0.8708283 | 0.7657319
HiLu 0.2833661 | 0.2660475 | 0.2510355 [ 0.6192805 | 0.5347448 | 0.5481383 | 0.9735029 | 0.892521 0.8196442
ML 0.2818188 | 0.2630449 | 0.2469734 | 0.4580663 | 0.4167675 | 0.4139603 | 1.2254239 | 1.1767008 | 1.1163396
MLGRID | 0.2815797 | 0.2628911 | 0.2466277 | 0.4414921 | 0.4043617 | 0.4023914 | 1.1775677 | 1.1154045 | 1.0340933
oLS 0.1393636 | 0.1359369 | 0.1344286 | 0.2058534 | 0.2172545 | 0.2089693 | 0.5903161 | 0.6773591 | 0.6634187
0.02 CORC 0.1342936 | 0.136505 0.1354404 | 0.1778809 | 0.1591779 | 0.1500322 | 2.192935 3.7476047 | 3.1649482
HILY 0.1636967 | 0.1523624 | 0.1479018 | 0.2136975 | 0.1905953 | 0.1762796 | 0.3998344 | 0.3735938 | 0.3769719
ML 0.1369034 | 0.154189 0.1673877 | 0.231402 0.2150166 | 0.200496 0.4249026 | 0.4181026 | 0.4358225
MLGRID | 0.1528453 | 0.1425759 | 0.1396 0.2543282 | 0.2314688 | 0.2223818 | 0.4372153 | 0.4426205 | 0.4567298
OoLS 0.1202272 | 0.1175814 | 0.1155771 | 0.2482037 | 0.2294696 | 0.2231072 | 0.5956265 | 0.6403861 | 0.5958598
0.05 CORC 0.0957375 | 0.0970671 | 0.097874 0.5256693 | 1.4968368 | 1.2303207 | 1.5197523 | 1.5531538 | 1.267398
HILU 0.0960903 | 0.097347 0.098252 0.4367708 | 0.4688644 | 0.3981557 | 0.2512618 | 0.2622081 | 0.3752807
ML 0.0955999 | 0.0960047 | 0.0925097 | 0.2188795 | 0.2088446 | 0.1958921 | 0.42803 0.4470161 | 0.4230614
MLGRID | 0.0946084 | 0.0949742 T 0.0915859 | 0.2556906 | 0.2419552 1 0.2236712 | 0.420165% | 0.4348797 | 0.4139272
Significant | Estimator | p = 0.4 p =108 p =109
Level N=60, N=60, N=60, N=60, N=60, N=60, N=60, N=60, N=60,
R=30 R=40 R=580 R=30 R=40 R=50 R=30 R=40 R=50
OLS 0.176368 0.158899 | 0.1642362 | 0.517286 | 0.459528 | 0.4374466 | 1.394178 | 1191885 | 1.1364449
CORC 0.1057766 | 0.095094 | 0.0916026 | 0.072525 | 0.068183 | 0.0692881 | 0.220702 | 0.191118 | 0.1819406
0.01 HILU 0.107703 0.09647 0.0926124 | 0.081027 | 0.074721 | 0.0765582 | 0.184252 | 0.150104 | 0.1455753
ML 0.122844 0.105467 | 0.9812212 | 0.073347 | 0.06987 0.0683459 { 0.182376 { 0.153864 | 0.1607063
MLGRID | 0.102877 0.090692 | 0.0865706 | 0.074704 | 0.071007 | 0.0868902 | 0.1312 0.119674 | 0.1122606
OLS 0.079563 0.074993 | 0.0736084 | 0.176403 | 0.173018 | 0.1666772 | 0.45346 0.402187 | 0.391828
CORC 0.055579 0.053211 | 0.0526387 | 0.044403 | 0.039953 | 0.0366614 | 1.499516 | 1.106077 | 0.9052559
0.02 HILU - 0.054644 0.052807 | 0.0521946 | 0.047191 | 0.041455 | 0.0374849 | 0.080429 | 0.105857 ( 0.1002894
ML ~1.0.078449 0.068465 | 0.0643163 | 0.041674 | 0.040717 | 0.038563 0.121253 | 0.132635 | 0.1546279
MLGRID | 0.081523 0.071261 | 0.0665087 | 0.046266 | 0.046218 | 0.0451247 | 0.126422 | 0.122912 | 0.1265501
OoLs 0.066635 0.064482 | 0.0636957 | 0.137192 | 0.132738 | 0.130665 0.337234 | 0.353237 | 0.3362023
CORC 0.050026 0.065585 | 0.0632818 | 0.038182 | 0.033103 [ 0.0327175 | 0.075943 | 0.19537 0.1909612
0:.05 HILU 0.050365 0.044886 | 0.0468954 | 0.039983 | 0.034771 | 0.033373 0.058576 | 0.094843 | 0.0935037
ML 0.043962 0.039757 | 0.041602 0.048031 | 0.040245 | 0.0377033 | 0.183619 | 0.171501 | 0.1967271
MLGRID | 0.04497 0.040363 | 0.0421535 | 0.037801 | 0.032457 | 0.0428181 | 0.13729 0.140487 | 0.1479234
Table 3: Sum of RMSE of Bias for Estimators of 3 for N=20 and N=60 (All replications)
Significant | Estimator | p = 0.4 p=08 =09
Level N=20, N=20, N=20, N=20, N=20, N=20, N=20, N=20, =20,
R=30 R=40 R=50 R=30 R=40 Rs50 | R=30 R=40 | R=50
OLS 2.1463831 | 2.1457388 | 2.126307 2.3499986 | 2.3172336 2.272992’5‘7 2.5031266 | 2.490157 24173733
CORC 2.1452809 | 2.1355531 | 2.105471 2.462485 2.3940088 | 2.4069304 | 24647014 | 2.3835384 | 2.3268551
0.01 HILU 2.1463955 | 2.1373491 | 2.1072543 | 2.2629714 | 2.2424531 | 2.3075708 | 2.3034195 | 2.2433428 | 22028399
ML 2.1381025 | 2.1356164 | 2.1185440 | 2.1743471 | 2.1504862 | 2.1672798 | 2.5181316 | 2.4926103 | 2.4888467
MLGRID | 2.1379813 | 2.1357456 | 2.118759 2.1569248 | 2.138691 21317296 | 2.5544234 | 25272226 | 2.4754435
oLsS - 2.1030006 | 2.0937159 | 2.0779932 | 0.6282435 | 0.644284 0.6307173 | 2.361669 | 2.3984561 2.3807055
CORC 2.1354608 | 2.1180829 | 2.1161594 | 0.5984365 | 0.5693603 0.54924797l_‘72;8§]7?568 3.1000047 | 2.9631635
0.02 HILU 2.0978876 | 2.0974097 | 2.0993738 | 0.6575598 | 0.6256405 | 0.5969537 | 2.1823687 | 2.1198413 | 21585131
ML 2.0692482 | 2.0619373 | 2.0543535 | 0.6794952 | 0.6574901 | 0.6328284 | 2.2053012 .2.1680719 2.1764571
MLGRID | 2.0646949 | 2.0600925 | 2.0607954 | 0.7132915 | 0.6836332 | 0.6690777 | 2.2486543 | 2.2150724 | 2.203685 )
LQLS 2.0584024 | 2.060925 2.0575592 | 0.6950253 | 0.666721 0.6563293 | 2.3185126 | 2.268946 2.2600278
CORC 2.0276345 | 2.0317627 | 2.0427828 | 0.9503283 | 1.4901532 | 1.3663103 | 2.6426014 | 2.6621549 | 2.675431
0.0 HILU 2.0504206 | 2.0489425 | 2.0567887 | 0.8954525 | 0.9140499 | 0.8510265 | 2.1306611 | 2.1568205 | 2.2757302
ML 2.0333824 | 2.040713 2.0408009 | 0.6642964 | 0.6435349 | 0.625306 2.1660587 | 2.1406656 | 2.1520211
1 MLGRID | 2.0348269 | 2.0414671 | 2.041734 0.7247571 | 0.6995756 | 0.670853 2.1751938 | 2.1497901 | 2.163981
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{
Significart | Estimator | p = 0.4 y p =08 p=09
Level N=60, N=60, N=60, N=60, N=60, N=60, N=60, N=60, 1 N=80,
R=30 R=40 R=50 R=30 R=40 R=50 - | R=30 R=40 R=§0 .

OLS 0.432837 | 0.417545 | 0.510646 | 0.799578 | 0.771886 | 0.758931 | 1.478458 | 1.390382 | 1.361902
CORC 0.364423 | 0.348950 | 0.343160 | €.358727 | 0.348169 | 0.351424 | 0.808653 | 0.575812 | 0.583228

0.01 HILU 0.365166 | 0.350318 | 0.344064 | 0~388868 | 0.374297 | 0.379615 | 0.596516 | 0.544424 | 0.536552
ML . 0.371134 | 0.347982 | 0.337455 | 0.36433 0.356154 | 0.351744 | 0.566072 | 0. 63251'» 0.544283
MLGRID | 0.338586 | 0.322367 | 0.315461 | 0.369397 | 0.36049 0.392958 | 0.492167 | 0. 47950 2 | 0.466345 _{
QLS 0.289108 [ 0.287262 | 0.287064 | 0.499281 | 0498618 | 0.487889 | 0.824996 | 0.88138 | 0.887076

. CORC 0.262385 | 0.261914 | 0.283569 | 0.204048 [ 0.282924 | 0.271163 | 1.347603 | 1.195085 ! 1.003888

0.02 HILU 0.260199 | 0.260856 | 0.262112 [ 0.302649 | 0.288182 | 0.274514 [ 0.381891 0.451763 | 0.436026
ML 0.292932 | 0.278018 | 0.26989 0.284472 | 0.28511 0.277913 | 0.481008 | 0.482905 | 0.53409%
MLGRID | 0.301111 0.264@ 0.275033 | 0.299567 | 0.301843 | 0.298131 [ 0.47942 0.467303 | 0.468303
QLS 0.274168 | 0.273427 | 0.270854 | 0.446598 | 0442921 | 0.439856 | 0.78876 0.834229 | 0.8128%
CORC 0.25861 0.29465 0.289281 | 0.2816803 | 0.271409 | 0.265086 | 0.378365 | 0.536427 | O. naiﬁ

0.05 HILU 0.2604 0.3_5065 0.256657 | 0.286894 | 0.277325 | 0.268568 | 0.358037 | 0.405429 %406285
ML 0.237609 | 0.227659 | 0.229851 | 0.313517 | 0.297066 | 0.283938 | 0.555445 | 0.531554 554473
MLGRID | 0.245459 | 0.233951 | 0.235508 | 0.275394 | 0.26423 0.296059 | 0.475221 | 0.476191 | 0.485026

4.0 DISCUSSION OF RESULT REFERENCES E e

The simulation resuits, under alf the finite pfoperties
considered show that all estimators are adversely affected as

autocorrelation coefficient (p) is close to unity when the

regressor is significantly correlated with the autocomelated
error terms.  This conforms to literature when there is no
correlatlon between the regressor and the error terms (See
Green®, Verbeck™, Johnston and DiNardo'', Nwabueze"). In
this regard the estimators rank as foliows in descending order:
OLS, MLGRID, ML, HILU and CORC.

The results suggest that OLS should be preferred

when autocorrelation level is relatively mild (p = 0.4) and

the regressor is significantly correlated (at Jeast at 5%) with the
autocorrelated error term.  This seems plausible because the
corrective measures incorporated into the GLS (CORC, HILU,
ML, MLGRID) estimators make use ef the ‘badly behaved
regrasgor (regressor correlated with error terms) and these
may adversely affect the performance ef these estimators.
The OLS estimator does not correct for autocorrelation and is
therefore, not affected by this problem.

We found that the estimators conform to the
asymptotic properties of estimates considered. This is seen

when the level of autocorrelation is mild (i.e. © < 0.8) at all

significant levels. The estimators' rank in decreasing order of
conformity with the observed asymptotic behaviour is as

follews: OLS, HILU, MLGRID, CORC and ML. This ranking is .

contrary to that of Nwabueze'” when there is independence
between the regressor and the error terms.

Most of the criteria used in studying the relative
perforr .ance of the five estimators have not exhibited any

remarkabile sensitivity to the number of replications. Increasing -

the numbar of replications has tended to confirm the stability of
the study.

We also note that ML and MLGRID have very similar
behavioural pattern, the same for CORC and HILU as
observed in the finite sampling properties of Bias, Variance
and the RMSE.

5.0 CONCLUSION

We have shown that when there is correlation
between the regressor and the error terms in a classical
simple linear regression estimation problem, OLS estimation
method should be used based on the finite sampling criteria
used in this experiment. It is also shown that all the estimators
are still asymptotically behaved based on the criteria used,
with OLS estimation method performing best.
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