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ABSTRACT

This paper intends to establish multivariate time series models for pure moving average vector series which assume linear and
nonlinear components. General Bilinear Moving Average Vector (BMAV) models have been established. The three vector series
used for the modeling suggested trivariate time series models as a special case of multivariate time series models and estimates
obtained from the models are graphically shown in figures 1, 2, and 3 .

KEYWORDS: Bilinear Moving Average Vector Models, Vector white noise, Trivariate time series models, Linear and Non linear
models ‘ ¢

INTRODUCTION

Most time series analysts assume hnéanty and stationarity, for technical convevience. when analyzing macroeconomic
and financial time series data, (Franses, 1998). However, some of the microeconomic and financial data are not linear, due to its
dynamic behaviour. Classical inear models are not appropriate for modelling such nonlinear series, {Subba Rao and Gabr, 1984).
In most cases, nonlinear forecast is superior to linear forecast. Maravall (1983) used a bilinear model to forecast Spanish monetary
data and reported a near 10% improvement in one-step ahead mean square forecast errors over several ARMA alternatives. There
is no-gainsaying the fact that most of the economic or financial data assume fluctuations due to certain factors. That is why the use
of nonlinear models in forecast gives higher precision than linear models.

Let e; be a sequence of inde fendently and identically distributed random variables defined on a probability space

(Q,B,P) with E(e)) = 0 and E(¢”)) = 6~ < ». The general superdiagonal bilinear model X, wuth respect to €18
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where a,. b,. ¢, are fixed time independent parameters, (Akamanam. Bhaskara Rao, and Subramanyam. 1986)

Oyet (1991) defined a process (X,) ', on a probability space (£L.E.P) as a time varying bilinear process of order (p.q.P.Q) and
denoted by BL(p,q.P.Q). if it satisfies the following stochastic differénce equation .
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where (2,(2))1<rps (€L () 1jeqe (D DY) 1ip 11 are time-varying coefficients which depend on finite dimensional unknown
parameter vectors a, ¢ and b respectively. The sequence (81)1(‘1 is a heteroscedastic white noise process. That is,ﬂ(Ct)l(‘Z s a
sequence of INdependent random variables, not necessarily identically distributed, with mean zero and vanance G,”. Moreover & is

independent of past X,. The initial values X.. t < |, and £;_{. | are assumed to be equal to zero.
Boonchai and Eivind (2005) stated the general form of a multivariate bilinear time series mode! as

Xy = }:A|Xl»| + ‘\;:Mfcl‘i N :X.\;;Bd{)xmcdu b

Here the state X, and noise e are n-vectors and the coefficients A,M,. and By, = 0. and we have the class of well-known vector
ARMA models. The bilinear models include additional product terms BuX; ex,. as the name indicates these models are linear in
state X, and in noise e;separately, but not jointly From a theoretical point of view, 1t is therefore natural to consider bilinear models
in the process of extending linear theory to non-linear cases. According to Boonchar and Ewind (2005), a particular reason for
introducing bilinear time series in population dynamics 1s that they are suitable for modelling environmental noise. One may start
with a deterministic system with (constant) parameters that describe conditions that depend on a fluctuating environment.
Boonchai and Eivind (2005) made extension first to univariate and then to multivaniate bilinear models. The main results give
conditions for stationarity, ergodicity, invertibility. and consistency of least square estimates

in this paper, we are interested in estimation of Bilinear Moving Average Vecto: (BMAV) models We consider three
vectors, which consist of a response and two predictor vectors. The data source 1s a monttily generated revenue (for a peniod of ten
years) of a Local Government Area in Nigeria.
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2. MODELS SPECIFICATION

(a). Linear model:
The general multivanate analogue to the univariate Autoregressuve Moving Average (ARMA) model! for the vectors is.

p n Kk g vm
X][ = }_: _‘\_‘ : a ”X” a t+ ( i -+ \ \ \ /\,h,h( 1-b .2'
a= i 1= b- IJ‘ Th=1

‘where, Xi; = (X1, Xa,....Xp) are vectors, Y, i are matrices of coefficients of the autoregressive parameters. (', are the
vector white noise, )q,_,h are matrices of coefficients of the moving average parameters, (r = n)

(b). Non-linear model:
The non-linear models for X1, X1, X3, ... Xyt IS’

n vopgq
X = :_, L }_: Y Bdhl[ Xita € b .2.2
ilj-la= Ib=0
where,
Xt = ( Xy Xon -« - . Xp0)- Ban yy are the matrices of coefficients of the respective vector product series, 1 1,
2....n j=12. ovia= 12, ...pb=01, ... q.
(c) Bilinear Moving Average Vector Model:
The general BMAV model may be written in the form
g v om n v q
X = Cu+ 2 Y Yoo pCrnt L L f_ﬁhu tC b e 2.3
b=1j=th=1 = lj=1b=

where,
Vectors and coefficients are as described above.

3. ESTIMATES for BMAV Model:

The vector moving average bilinear models are models which compose of linear and non-linear parts. The linear part describes a.
pure moving average vector model, white the non-linear part describes the interactive products of the stationary series and vector
white noise such that the subscripts of each coefficient explains the particular pair of interactive vector product at specific lags. The
models are generally additive, and each of the response vectors is a function of the distributive fags of vector white noise and the
associative products. The ordinary least squares method was adopted for the estimation of the parameters. The large number of
predictive vectors in the relationship makes manual calculation of the parameters using inverse of a square matrix difficult. This
calls for the use of statistical software (Minitab) for the calculation of the parameters. The regression estimates obtained provides
the following models for the three vector seres

Xn (‘n - 0523(\1\ + ().|82(‘31,) - ().334(\1 2 + ().00423)(}14)(‘1,.] - ().()00381\]1-(»(3[ |

- 0.002064X500C 01+ 000033 X500 1 - 0.00236X10C 32 - G.00300X0C 300 L.l 30
From the above model.
}\1 1= - 0523 )vl 12 - 0.182. }xj 1y - 0.334. Bm 1 (0.00423. [))m py - 0.00038

ﬁ()] 2= - O()()264. ﬁ()] 22 ()UU()35. ﬁ()_’} 137~ 0()023(). B()Q 23 - 0003()()

X = Co = 0.037€ 1., - 0.394C; + 0.097C55 + 0.00313X0C 1 - 0.00121X,0.0C
= 0.00272X50.0C 10 + 0.00213X50C a0 - 0.00210X 0 500 - 0.00358X 00y, o] 3.5
From the above model,
?\‘yzx = - 0037, }»; 2 - 0. 394 )m 237 = 0. 097 Bm [ =(.0031 3. Bm 127 -0.00121
Bm - 0()0272, B(n 0= 0002‘3. ﬁ()z 137 - O()OZ[O, B()p_ 23 - ().()()338

X3 = €3~ 0.486€C ., +0.577C>; - 0.432C3 +0.00110X,, 5611+ 0.00083X.0CH
— 0.00008X-.0€" 1y + 0.00178X5.0C ;- 0.00025X,.0C 30 + 0.00038X5.0Cyo0 i, 3.6
From the above model.
Mz =-0486, A1y = 0577, ko 3= -0.432, Poy 11 = 0.001 10, By~ 0.00083
Bor 21 = - 0.00008, Boy 22 = - 0.00178, Boo 137~ 0.00025. B2~ 0.00058

The estimated models for the response vectors Xq, X» and X are used to obtained estimates. which are shown in Appendix ‘2
The data in Appendix '1' are original differenced data. The actual and estimated data are both plotted in each of figures 1", '2" and

‘3'for X41. X1 and X response vectors
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Table 1. Stationary Vector Series of Internally Generated Revenue Series

S —

sin K Xa Xa . S/n_ | Xt | X;l . X N VS/[L Xy Xz. Xu N
1 41 | 2478 "0.00 2478 81 | 2259 30.71 -8.12
21039 [ 0.30 0.09 42 | -16.93 -1.43 -15.50 82 | 50.74 -5.69 | 56.43
3 [1.91 [ -12t -0.70 43 [ 702 | 9.75 1273 83 | -4862 11.81 -60.43
4 1070 2.58 -1.88 44 | 79.30 90.65 [-11.35 84 | 5233 8.86 43.47
5 [-4.09 -1.22 -2.87 45 [ 379 69.26 73.05 85 | -4330 | -31.18 12.12
6 | 435 3.09 11.26 46 | 174.75 139.03 35.72 86 | 75.45 -58.35 | 133.80
7 1123 -3.51 474 47 | 176,52 | -101.04 7548 187 | 7360 136.35 6275
8 13.66 6.81 6.85 48 | -88.44 63,53 24 91 88 | -67.25 | 14.47 52.78
9 | -4.13 -3.28 -0.85 49 | 18836 185,39 297 89 | 6283 | -2962 L -33.2%
10 | 4.39 4.29 0.10 50 [39.11 | 54.04 1493 |90 | 2549 [ 260 12289
11 (322 4.79 -157 51 | -118.25 | -230.30 11205 {91 [525 -58.10 63.35
12 | -8.51 -0.98 -7.53 52 | -58.26 4.68 | -62.94 92 |-57.88 1310 | -70.98
13 | 5.62 1.09 4.53 53 | -41.76 -7.71 -34.05 93 [ 3041 -7.67 38.08
14 | -13.03 | -6.87 .| -6.16 54 | -14.49 -43.99 29.50 94 | 5878 2.85 55.93
15 1199 1036 -2.35 55 | 27.83 3284 -5.01 95 | -7407 | -4.84 -69.23
16 [ 1.30 -1.28 258 56 | 6.21 -38.24 44,45 66 | -76.89 [ -34.11 4278
17 1576 -233 8.09 57 | -55.00 -14.08 -40.92 97 [ 101.05 | 7985 2120
18 | 6.02 2.96 3.06 58 | 12.36 37.99 -25.63 98 | 219 22 61 -20.42
19 | -13.08 | -10.00 -3.08 59 | 42.61 -3.52 46.13 99 ] 10030 | 1258 87.72
[20 | 6.29 1.93 4.36 60 | 62.42 5511 731 100 | 84.61 67.20 1741
[21 [-510 -3.92 | -1.18 61 | 991 6645 -56.54 101 | -634 -26.02 20.68
122 1-296 -0.31 265 62 | -59.82 -57.16 -2.66 102 | -138.61 | -34.83 -103.78
|23 | 1.36 474 -3.38 63 | -22.96 -26.40 3.44 103 | 76.38 9141 -13.03
[24 627 [ 186 4.4 64 | 64.65 88.98 -24.33 104 | 14671 | 382 150.53
25 [9.14 13.55 -4.41 65 | -66.99 -87.19 2020 105 | -78.43 | -44.42 -34.01
26 | 423 1.05 3.18 66 | -83.97 -83.22 -0.75 106 | 64.15 76.37 -12.22
27 | 22.50 La 70 -1.20 67 | 43.81 41.31 2.50 107 | -130.03 | -178.99 48.96
28 (468 [ -347 8.15 68 | 38.85 | 38.03 0.82 108 | 32.07 125.16 -93.09 |
29 | 26.90 15.85 11.05 69 | 0.00 0.00 0.00 109 | -11467 | -61.65 -53.02
30 [ 1662 13.32 3.30 70 | -35.08 -83.39 4831 110 [ 9148 | 22.18 6930 |
31 | 3664 30.57 6.07 71| 456 6499 [ -6043 | 111 | 37.77 2107 11670
32 | 6311 53.32 979 72 | 17.49 2273|4022 112 | -77.33 | -0.78 -76.55
33 |-2169 | -3244 10.75 731910 -19.13 28.23 113 | 6586 58.41 7.45
34 | -2773 [ 2435 -52.08 74 | -10.35 38.70 -48.05 114 [ 75.09 -33.06 108.15
35 | 60.94 49.06 11.88 75 | 14.03 10.93 [3.10 115 | -194.68 | -118.33 -76.35
36 | 11181 | 11536 -3.75 76 | -59.80 -64.25 4.45 116 [ 166.79 | 176.04 -6.25 -
37 | -199.85 [ -188.24 -11.61 77 | 98.60 112.74 -14.14 117 ] -95.54 | -114.14 1860 |
38 [-1757 [ -4187 -] 24.10 78 | 4721 -43.20 -4.01 118 | 26.41 58.55 -32.14
39 | -1823 [ -16.46 -1.77 79 | 439.18 436.68 2.50 119 | 75.56 19.52 56.04
40 | 54.11 64.66 -10.55 80 | -a7261 | -473.43 082  [120 [ 21832 [ 193.90 2442
Appendix 2: Regression Estimates Of Stationary Series Obtained From Bilinear Moving Average Vector Models
sin | Xu Xz 1 Xa [sin [ Xy Xat sin_ | Xy Xat [ Xat
1 I 41 30.56 9 oo 21.56 81 -71.78 -87.23 15.45
n T 42 | 32904 1568 | -17.26 82 9152 7624 1527
3 43 10.35 961 0.75 183 18105 | 064 -80.41
4 1 [44 [81.11 9669 | 1558 84 4332 | 097|423
5 {45 125862 -65.24 | 7477 | 4722 2755 |
6 4.64 2.38 226 | 46 184.92 | 137.27 86 | 6022 | -69.29 129.51
7 2,61 -3.40 6.01 |47 | 19727 -78.74 87 | 62.51 127 81 65.30
8 13.72 6.08 7.65 48 | -96.04 -59.50 88 | -52.46 3111 -83.57
) -4.42 -1.99 243 |49 [ 18220 210.96 89 | -12234 | -65.04 -57.30 |
10| 048 311 -263 | 50 | 64.10 50.97 90 [30.14 | 186 3199 |
11 1.03 5.84 -4.81 51 -146.60 -328.93 1ot 12124 |-7550 96.74
121939 -1.33 806 |52 [ -69.30 -20.13 [ 92 | -5594 243 -58.37
13 595 -0.24 619 |53 17.72 66.30 | 26.44
14 | -12.30 -7.56 474 | 54 [ -50.25 -49.40 | 37.49
15 1048 -0.11 0.59 55 | 31.66 33.79 -70.57
16 | 2.63 053 . 316 56 | 32.27 -30.84 4257 |
17 1692 -2.51 9.43 57 | -79.94 -28.97 0.55
18 _[6.73 341 362 |58 | 848 4127 348
19 | -1415 -8.83 562 |59 | 4212 078 [ 128.05
20 1.59 1.08 0.50 60 7277 ] 55.84 24.49
21 -5.96 152 444 | 61 12.61 | 62.81 _ 1165
22 336 -0.45 -2.91 62 | 7068 | 6726 | -3.43 -14368
23 125 541 | -416 {63 | -4091 4893 | 802 3480
24 [701 214 487 |64 | 97.41 106.07 | -8.66 175.29
25 110.00 12.76 276 165 | -57.90 9459  136.69 19 81
26 | 677 1138 539 66 | -107.76 | -112.56 | 4.80 474
27 12083 21.49 1 -067 [ 67 | 4596 46.37 | -0.41 414
28 {786 213 1999 68 | 4793 (5690 [ -897 -87.21
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29 [2369 © [1160 [1210 JeS | 732 508 " ["224 1109 [4600 | 229 | 437

(3011703 11520 174 |70 | 3046 | -92.23 [ 6277 | 110 | 6048 980 17038

| 31 3.37 7 -2.86 I 56.13 5899 | 111 ;8599 4313 | 4286

32 - 7.29 72 33.62 HER 2 1 -71.03 | -11.93

33 1877 173 T-1510 34 | 4319

3¢ [ 5348 |74 295 | 14 8033

35 “Thar (75 [0 ] 15 ] 23924

36 [ 14522 | 14563 | 071 8 | 6192 17637 |-

37 22451 "] 23273 (822 1 . 11540 |

38 8118 3228 178 13389 [ 1702

39 20.64 ;79 143324 S 1 45.29 7013

40 6183 _L.:77089 [ 74406 | - 90 [ 22769 3521
CONCLUSION

It is a well known fact that not all series assume linearity in modelling Some observations are both linear and nonlinear due to
certain conditions in which they occur. Bilinear models have two parts, the linear and nonlinear parts In this special moving
average case, the first part I1s the linear combination of the vectors white noise and its associative parameters, while the second
part is sum of products of the vector series and time varying vector white noise. A statistical software (Minitab) 1s used for the
estimation of the parameters. The models established are called Bilinear Moving Average Vector {(BMAV) Models. The estimates
obtained for X+, X, and X3 shown in appendix ‘2" are plotted in figures ‘1", ‘2" and '3’ and these estimates prove reality of the
models obtained .
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Fig. 1: Plot of Actual and Estimates of X1t
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Fig. 2. PLOTS OF ACTUAL AND ESTIMATES OF X2t
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Fig 3: PLOTS OF ACTUAL AND ESTIMATES OF X3t
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