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ABSTRACT

-

in this bape'r, we have investigated the formation of Bose-Einstein condensation from the interaction of bosons in a modified
Hubbard model which has a kinetic energy part and a Coulomb potential to contiol the interaction. Using the highly simplified
correlated variation approach (HSCVA), we are able to obtain the ground state energy and pair correlation function (PCF) for an N
x N xN=5x5 x5 lattice at positive and negative values of the interaction strength. Analysis of these results enables us to
determine the repulsive and attractive regions of the model from which the conventional and non-conventionai Bose-Einstien

condensation can ve vuiaingd respeciivery.
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INTRODUCTION

it is a common knowledge today that all particles can be
divided into two big classes called fermions and bosons. The
fermions have half-integer spins and consequently obey the
Pauli exclusion principle which states that no two identical
fermions can be in the same quantum state at the same time.
The physical implication is that fermionic systems will have
many energetic particles flying around even as the
temperatures goes down to zero as only one particle can
occupy the lowest energy. In general, fermions are governed
by the Fermi-Dirac distribution (FDD).

The bosons, however, have integer spins and consequently do
not obey the Pauli exclusion principle. The rules governing the
behaviour of photon which is the commonest boson, were first
given by Satyendra Nath Bose in 1924. Excited by this work,
Einstein in the same year extended the rules to other bosons
and thereby gave birth to the Bose-Einstein distribution (BED).
While doing this, Einstein found that not only is it possible for
two bosons to share the same quantum state at the same
time, but that they actually prefer doing so. He therefore
predicted that when the temperature goes down, almost ali the
‘particles in a bosonic system would congregate in the ground
state even at a finite temperature. it is this physical state that is
called Bose-Einstein condensation (BEC). Thus a Bose
system that condensate purely due to the BED is called perfect
‘Bose gas (PBG) (van den Berg and Lewis 1982; Pule 1983;
Zegrebnov 1999, 2000; Bru and Zegrebnov 2000a; 2000b).
The magnitude of the condensation of the PBG strongly
depends on.the shape of container and the kinetic energy of
the particles (van den Berg 19883; Pule 1983).

The Einstein's prediction however was considered a
mathematical artifact for sometime until Fritz London in 1938
while investigating superfluid liquid helium realized that the
phase transition could be accounted for in terms of BEC. This
analysis however suffered a major set back because the
helium atoms in the liquid interacted quite strongly. This was
why scientists had to move ahead in search of BEC in less
complicated systems that would be close to the free boson gas
model. Fortunately, the breakthrough came in 1995 when the
first BEC was observed in rubidium atoms (Anderson et al.
1995; Cornell 1996) and this was followed by similar
observations in some other cold alkali atoms such as those of
lithium and sodium (Davis et al. 1995; Kirsten and Toms,
1956). Though these Bose systems manifesting condensation
are gaseous, they are far from perfect because they are
influenced by interactions (Davis et al 1995, Bru and

Zagrebnov 2000a; 2000b). For example, Davis et al. (1995)
observed that in a condensate of sodium atoms, interaction
seems to predominate compared to the Kinetic energy. The
implication is that real Bose systems manifesting condensation
are nat purely due to the BED as such they are now referred to
as imperfect Bose gas (IBG). If the IBG condensation is due to
repulsive interaction, it is called conventional Bose-Einstein
condensation (CBEC) and when it condensate due fo
attractive interaction, it is called non conventional Bose-
Einstein condensation (NBEC) (van den Berg et al 1984;
Michoel and Verbeure 1998, Zegrebnov 1999; Bru and
Zagrebnov  2000a; 2000b). Consequently, the current
theoretical search is for a model of interacting bosons that wil
produce the twu kinds of condensates (Bru and Zegrebnov
2000a; 2000b).

Since results in the literature show that the Hubbard model for
electronic interactions has both repulsive and attractive
regions depenaing on the interaction strength (Enaibe and
Idiodi 2002; Akpojotor and Idiodi 2004a: 2004b), it is therefore
considered a natural candidate to investigate the interacting
bosons. In a preliminary report (Akpojotor and Qjobor 2006) in
which we compared the two-electron variational Hubbard
interactions with that modified for two-charged bosons in N =
2ZNxN=4x4and NxNxN=5x5xb5 lattices, the resuits
show only slight difference in the matrices obtained for the two
kinds of particles. This slight difference did not, however, make
the trend observed for the ground state energy and variational

parameters of the electronic interactions to differ from those of:

the bosons for the N = 2 case specifically considered. This is
enough motivation to compute in this present study, the pair
correfation function (PCF) in order to determine the repuisive

and attractive regions of the modified Hubbard bosonic

interactions.
It was pointed out in the preliminary report that there are three
basic steps to use the highly simplified correlated variational

approach (HSCVA) to investigate the two-charged boson '

Hubbard interaction. The first step is to obtain the matrix
representation of the interaction given by (Akpojotor and Idiodi
2004a; 2004b; Akpojotor and Ojobor 2006).

(H,, T B I
)II 4t ”

where E is the ground state energy, | is a unit matrix, X are the
variational parameters, Lc is the separation of the states
before the Hukbard interaction, L' are the separations of the
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new states produced by using the medified Hubbard
Hamiltonian to operate on a3 state with Le. and the T is th»
number of such new state for the various L',

The H in Eq. (1.1) is a single band Hubbard Hamiltonian
modified for charged bosons and it is given by

H=-t 3 C'C, +HC. +U2 nn, (1.2)

<i,j>,

where C,'ﬁ(C/) and n, are respectively the creation

(annihilation) and number operators for bosons in the Wannier
state on the ith(jth} site, H.C. is the Hermitian conjugate, U is
the onsite Coulomb potential for interacting charged particles
and t determine the kinetic interaction, hence the U/t in Eg.
(1.1) is the interaction strength.

The second step is to obtain the eigenvaiues and ewgenvectors
of the matrix and the smallest of them for a particular
interaction is its ground state energy while its corrésponding
eigenvectors are the variational parameters needed to
compute the PCF in the third step.

The plan of this present study is as follows. Since we had
shown in the preliminary report how to use the HSCVA to
obtain the matrix representations of the modified Hubbard
Hamiltonian two boson interactions in N =2 N x N =4 x 4 and
N xNxN=5x5x5 as well as how to obtain numerically the
ground state energies and variational parameters for N = 2, we
hope solving the matrices numerically for the remaining lattices
is straightforward. So in sec. ll, we will derive a general
expression for the PCF in terms of the variational parameters
and the total number of bosonic states in a given separation.
This expression will then be applied only to
NxNxN=5x5x5 Ourchoice of application emanates from
observations made in previous studies (Enaibe and Idiodi
2002; Akpojotor and Idiodi 2004a; 2004b) that the trend in any
dimension studied are usually consistent in the other
dimensions. Further, the three dimensional (3D) lattices will be
able to accommodate the random rotion in all spatal
directions of the Bose gas more than the lower dimensions
The results from the application will be presented and
discussed in sec Il and this will be followed by a conclusion.

PAIR CORRELATION FUNCTION (PCF)

In general, the pair correlation function is defined as the
conditional probability of finding a particle at site j when there
is another particle fixed at site i (Petukhov et al 1992). 1t is
expressed mathematically as

<(/// non, /(//)

i)

ey

@.1

where n, (=C () retains its definition, & which is the spin

projection is neglected for the bosons and the ket, / Y >, in
the Hilbert space is the wavefunction of the physical system
under consideration and it is defined as (Akpojotor and Idiodi
20043, 2004b, Akpojotor and Ojobor 2006)
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Z X, 1y, > (2.2)
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while its bra as
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In Egs (2.2) and (2.3), the X and Lc retain their earlier
definitions while 8 is the total number of possible separations
in a given lattice (Akpojotor et al. 2002; 2006). Taking into
account the two equations, it can be shown by mere expansion

that
N1
~ 2
Z, n X,

I,.=0

<yly > = (2.4)

where the n, denotes the total number of bosonic states

having separation Lc. See Akpojotor et al. (2006) on how to
determine the 17,

Similarly it can be shown that by expanding the number
operators for both onsite separations and the intersite
separations and using them to operate on the ket and then
introducing the bra, the numerator in Eq (2.1) becomes for
onsite separations,

<1;//n,n, /l//> =X, 2.5)
and for intersite separations,

<t///n,ni / l//> =2X; (2.6)

Finally, taking into account Egs (2.4) - (2.6) in Eq. (2.1), the
PCF can now be expressed in terms of the variational
parameters and the total number of state in a given separation
as

Py ot @.7)

for onsite interactions and for intersite interactions

5
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(2.8)

Egs. (2.7) and (2.8) are applied to N x N x N = 5 x 5 x 5 using
the variational parameters obtained from the solution of its
matrix representation by considering the following arbitrary
values for the interaction strength: U/4t = 10, 5, 2, 1.5, 1, 0.5,
0. -0.5, -1, -1.5, -2, -5, -10. The results are shown in Table 1.

PRESENTATION AND DISCUSSION OF RESULTS

In Table 1 which shows the interaction strength, the ground
state energy and pair correlation functionfor N xNxN=5x5
x 5, it is observed that the ground state energy of the two
interacting charged bosons are negative, non-degenerate and
decreases as U/4t is decreased. This is the same observation
made for both the electronic and bosonic interactions in N = 2
congidered in the preliminary report.
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Table 1: The ground state energy and pair correlation fuiction (PCF) at positive and negative values of the interaction

strength for the two-charged boson modified Hubbard interactions on NxNxN=5x 5 x 5.

0.0000228 as the interaction strength is decreased from Ui/4t =
10 to Pp = 0.007922 at U/4t = -10 while the largest intersite
separation decreases from Ps.y = Pg = 0.000834 at U/4t = 10
to Pg = 0 at U/4t = -10. The implication is that when the
repulsive interaction strength is large, the probability of finding
the bosons as far apart as possible is high while that of finding
the bosons on the same site is very low. The reverse is the
tase when the attractive interaction dominates as the bosons
now prefer to be on the same site while the probability of
finding the particles as far apart as possible tends to zerg. Itis
pertinent to point out here that even when the bosons prefer to
stay as far part as possible in the repulsive interaction, they
don't fiy out of the ground state. in other words, the gregarious
behaviour of bosons is not distoted by the repulsive
interaction.

_Another interesting observation from our table is that the
system was still repulsive when the interaction strength is
switched off, that is, U/4t = 0. This is why the PCF decreases
from the largest separation Ps.y = Pg = 0.000819 to that of the

. smallest separation Py = 0.000129. This ts contrary to our
expectation that the transition from the repuisive region to the
aftractive region should be when the interaction strength 1s
switched off, because the bosonic system will now be left with
only the kinetic part of the model Hamiltonian in Eg. (1.2) and
this part should naturally be a perfect Bose gas. This PBG
should have the same energy for lattices of the same
dimensions and the bosons should have equal preference to
stay on any site so that the PCF will be the same for all
séparations. 1t is observed from the table, however, that the

Interaction Ground
Strength State Pair Correlation Function (PCF)
Ul4t Energy
£
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Furthér, it is observed that the onsite PCF increases from Py = bosons prefer to stay together on any site when U/dt = -1 5

and the ground state energy is E -12.0000. Further
investigation of other lattices in all three dimensions, shows
that at precisely U/dt = - 0.5, U/dt = - 1. 0 and U/dt = =15, the
ground state energies are respectively E = -4.0000 for 1D
systems, £ = -8.0000 for 2D systems and E = -12.0000 for 3D
systems and that the PCF are the same for all the intersite
separations. These values of the interaction strength are
therefore the transition points from the repulsive region to the
attractive region in the various dimensions. This i1s a very
interesting observation as it imphes that BEC cannot “e
realised purely from the kinetic energy of the particles. In other
words, it 15 not possible to have BEC from a PBG driven only
by the kinetic energy of the bosons. Thus we have shown
theoretically why the experimentally observed Bose systems
manifesting BEC are influenced by interactions.

CONCLUSION

We have set out in this study to determine the repulsive and .
attractive regions to determine the conventional BEC and non
conventional BEC in the two-charged boson modified Hubbard
variation interactions. These regions have been duly observed
in the model and consequently we now have a rough estimate
of the parameter space for studying the two kinds' of
condensation from an imperfect Bose gas. it is recommended
therefore that for the application of the model to actual Bose
systems, more detailed studies have to be done to determine
the parameter space for each particular case. Another
interesting cbservauon is that the perfect Bose gas cannot
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manifest condensation purely from the kinetic energy of the
particles. This is very crucial as our theoratical model have
given insight into why real systems manifesting condensation
have always been influenced by interactions. Perhaps this
aspect of the study can be investigated further by enhancing
only the kinetic part of our model to see if it will manifest
condensation without any form of interactions.

Conclusively, it is pertinent to emphasize here as we have
done previously (Akpojotor and Ojobor 2006) that the
possibllity of obtaining both superconductivity and Bose-
Einstein condensation from the same model is quite enticing.
This promise of unity of two of the most important low
temperature phenomena is a worthy challenge for both
theorists and experimmentalists,
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