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ABSTRACT 

 
 
 In linear regression model, regressors are assumed fixed in repeated sampling. This assumption is not always satisfied 
especially in business, economics and social sciences. Consequently in this paper, effort is made to compare the performances of 
some estimators of linear model with autocorrelated error terms when normally distributed regressors are fixed (non – stochastic) 
with when they are stochastic. The estimators are the ordinary least square (OLS) estimator and four feasible generalized least 
estimators which are Cochrane Orcutt (CORC), Hidreth – Lu (HILU), Maximum Likelihood (ML), Maximum Likelihood Grid (MLGD) 
estimator. These estimators are compared using the finite properties of estimators’ criteria namely; sum of biases, sum of 
variances and sum of the mean squared error of the estimated parameter of the model at different levels of autocorrelation and 
sample size through Monte – Carlo studies. 

  

)

Results show that at each level of autocorrelation the estimated value of the criteria with stochastic regressor are much lesser than 
that of the fixed regressor for all the estimators except CORC when the sample size is small (n=20) and the level of autocorrelation 
is very high ( 0.9ρ = . Mo

)

re comparatively, it is observed that the same estimator(s) that is more efficient with fixed regressors is 
also more efficient with stochastic regressors except when the sample size is large (n = 80) and the level of autocorrelation is 
either low ( 0.4ρ = or high ( 0.8)ρ = . At these instances, the CORC / HILU estimator is more efficient with fixed regressors 
while the ML / MLGD estimator is more efficient with stochastic regressors. 
 
KEYWORDS: Fixed Regressors, Stochastic Regressors, Linear Model, Autocorrelated error, OLS estimator, Feasible GLS         
           estimators.  
 
INTRODUCTION 
 

 One of the basic assumptions that are made about 
the regressors in linear regression model is that they are fixed 
in repeated sampling. This assumption is not always satisfied 
especially in business, economics and social sciences. This is 
because their regressors are often generated by stochastic 
process beyond their control. For instance, consider regressing 
daily bathing suit sales by a departmental store on the mean 
daily temperature. Certainly, the departmental store can not 
control daily temperature, so it would not be meaningful to 
think of repeated samples when temperature levels are the 
same from sample to sample (Fomby et. al, 1984). Authors like 
Neter and Wasserman (1974), Maddala (2002) have given 
situations and instances where these assumptions may be not 
be tenable and have also discussed their consequences on the 
Ordinary Least Square (OLS) estimator when used to estimate 
the model parameters. Graybill (1961), Sampson (1974), 
Fomby et.al (1984) and many others emphasized that if 
regressors are stochastic and independent of the error terms; 
the OLS estimator is unbiased and has minimum variance 
even though it is not Best Linear Unbiased Estimator (BLUE).  
When all the assumptions of the linear regression model hold 
except that the error terms are not homoscedastic 

(i.e. ) but are heteroscedastic 

(i.e. ), the resulting model the Generalized 
Least Squares (GLS) Model.  Aitken (1935) has shown that the 

GLS estimator  of 
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where Ω  is assumed to be known. However,  Ω  is not 

always known, it is often estimated by Ω  to have what is 
known as Feasible GLS estimator. Many consistent estimates 

of 

^

^
Ω  can be obtained (Fomby et. al, 1984). 

With first order autocorrelated error terms (AR (1)), among the 
Feasible GLS estimators in literature are the Cochrane and 
Orcutt estimator (1949),  Hildreth and Lu estimator (1960), 
Prais – Winsten estimator (1954), Thornton estimator (1982), 
Durbin estimator (1960), Theil’s estimator (1971), the 
Maximum Likelihood estimator and the Maximum Likelihood 
Grid estimator (Beach and Mackinnon, 1978). Some of these 
estimators have now been incorporated into White’s SHAZAM 
program (White, 1978) and the new version of the time series 
processor (TSP, 2005).   
Consequently, effort is made in this paper to compare the 
performances of some of these estimators of linear model 
when normally distributed regressors are fixed (non – 
stochastic) in repeated sampling with when they are stochastic. 
 
LITERATURE REVIEW 
 
 The OLS estimator has been widely discussed to be 
unbiased but suffer efficiency in estimating the parameters of 
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linear model in the presence of autocorrelation (Johnston, 
1984; Chartterjee et.al, 2000; Maddala, 2002). To compensate 
for this lost of efficiency, Cochrane and Orcutt (1949) 
suggested a transformation of the regression model via the 
generalized least square (GLS) estimator. Chipman (1979), 
Kramer (1980), Kleiber (2001) and many others did observe 
that the efficiency of these estimators depends on the structure 

  

 
 
of the regressors that are used. Rao and Griliches (1969) did 
one of the earliest Monte Carlo studies on the performances 
of some of these estimators with autoregressive stochastic 
regressor. They observed that the OLS estimator is only 
more efficient than any of the GLS estimators considered 

when 3.0<ρ ; and that the performances of the GLS 

estimators are not far apart. Park and Mitchell (1980) 
observed that when regressors are trended, the estimator 
that uses the transformation (Paris – Winstern) is more 
efficient than the one that uses the  transformation 
(Cochrane – Orcutt) and that the latter should even be 
avoided since it is less efficient than the OLS estimator. 

P
Q

 More recently, Nwabueze (2005) examined the 
performance of some of these estimators with exponential 
independent variable. His result, among other things, show that 
the OLS estimator compares favorably with the Maximum 
Likelihood (ML) and Maximum Likelihood Grid (MLGD) 
estimators for small value of ρ  but it appears to be superior to 
Cochrane – Orcutt (CORC) and the Hidreth and Lu (HILU) 
especially when ρ  is large. Some other recent works that are 
done with different specification of regressors include that of 
Iyaniwura and Nwabuwze (2004a), Iyaniwura and Nwabuwze 
(2004b) and Olaomi and Iyaniwura (2006). 
Consequently, this paper compares the performances of some 
of these estimators when normally distributed regressors are 
fixed in repeated sampling with when they are stochastic. 
  
METHODOLOGY                   
 Consider the GLS model with AR (1) of the form  

  tttt uxxy +++= 22110 βββ        (3) 

 where   ttt uu ερ += −1     
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Its parameter estimations can be done using the OLS and the 
(feasible) GLS estimators. Thus, the performances of the OLS 
estimator and the following feasible GLS estimators are 
studied: CORC, HILU, ML and the MLGD estimators. Monte 
Carlo experiments were performed 120 times for three sample 
sizes  and four levels of autocorrelation 
(

( 20, 40,80)n =
=ρ 0.4, 0.8, 0.9, 0.99) with both fixed and stochastic 

regressors that are normally distributed. At a particular 
specification of n and ρ (a scenario), the first replication was 

obtained by generating  and hence . Assuming 
the process start from infinite past and continue to operate, the 
initial value of U  (i.e ) was thus drawn from a normal 

population with mean zero and variance

)1,0(~ Net tu

1u
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 ttt uu ερ += −11  t = 2, 3,…, n  (5) 

Furthermore, and were generated. 

Hence, the values of in equation (1) were also calculated by 

setting the true regression coefficients as

)1,0(~1 Nx t )1,0(~2 Nx t

ty
1210 === βββ . 

This process continued until all replications in this scenario 
were obtained. Another scenario then started until all the 
scenarios were completed. The only difference in these 
procedures with stochastic regressors is that at each 
replication the and  were newly 
generated. 

)1,0(~1 Nx t )1,0(~2 Nx t
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Evaluation and comparison of estimators were examined using 
the finite sampling properties of estimators which include bias 
(B), and variance (Var) and the mean squared error (MSE) 

criteria. Mathematically, for any estimato iβ of ir 
^

β of model 
(3) 
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for i = 0, 1, 2 and j= 1,2,…,120. 

ueze (2005), Olaomi and Iyaniwura 

Consider an estimator , then 

SBIAS of 

       
     
 
 
For each of the estimation methods, a computer program was 
written using TSP software to estimate all the model 
parameters and to evaluate the criteria. Often times, 
preference of estimators are based on bias (closest to zero), 
minimum variance and minimum (root) mean squared error. In 
this study, we utilized the criteria of sum of bias (SBIAS), sum 
of variance (SVAR), and the root mean squared error 
(SRMSE) of the estimated model parameters to compare the 
performances of the estimators. This approach has also been 
used by Iyaniwura and Nwabueze (2004a), Iyaniwura and 
Nwabueze (2004b), Nwab
(2006) and some others. 
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their SRMSE, they are simply said to be more 
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The efficiency of the estimators was further examined using 
the sum of SRMSE. An estimator with the smallest SRMSE is 
most efficient whereas if two estimators are nearly equal in 
terms of 
efficient. 
 
S AND DISCUSSION 
 
 The summary of the performances of the estimators 
on the basis of the sum of the criteria is given in table 1, 2 and 



  

ppendix while for all other sample 

ssor espec

3 in the appendix. Also, the summary of the most/ more 
efficient estimator(s) is shown in table 4 in the appendix. 
However, the estimated criteria of the model parameters for n 
= 20 for both fixed and stochastic regressors are given in table 
5, 6,7,8,9 and 10 in the a
sizes, see Ayinde (2006). 
 From the tables, it is observed that at each level of 
autocorrelation the estimated value of the criteria with 
stochastic regressor are much lesser than that of the fixed 
regressor for all the estimators except CORC when the sample 
size is small (n=20) where the CORC estimator has estimated 
value of the criteria greater with stochastic regressor than the 
fixed regre ially when the level of autocorrelation is 
very high ( 0 ).9ρ = . Also, with both fixed and stochastic 
regressor, as ρ increases the estimated criteria of the 
estimators in all the sample sizes increase. Asymptotically, it is 
also observed that the estimated value of the criteria reduce at 
ach lev

the summary of the results is shown 

ize is small
the level o

e el of autocorrelation. 
 Furthermore, in terms of the efficiency measured from 
table 1, 2 and 3 using the sum of root mean squared error of 
the estimated parameters, 
in table 5 in the appendix. 
From table 4, it can be seen that when the sample s  
(n =20) and f autocorrelation is both low ( 0.4)ρ =  

and high ( 0.8)ρ = the ML / MLGD estimator is more 
efficient; and that at the other levels of autocorrelation the 
HILU estimator is most efficient. When the sample size is 
moderate (n = 40), the results are essentially the same with 
when the sample size is small (n =20) except that the CORC 
estimator is re efficient at high level of 
autocorrelation ( 0.8)

now mo
ρ = ; and also it compet  HILU 

estimator when autocorrelation is very high ( 0.9)
es with the

ρ = under 
fixed regressors. Furthermore, when the sample size is large 
(n = 80) the results are the same with when the sample size is 
mode 0) except that when the autocorrelation level is 
high ( 0.8)

rate (n = 4
ρ = under stochastic regressors, the ML / MLGD 

estimators are more efficient.; and under fixed regressors 
when autocorrelation is low ( 0.4)ρ = the CORC / HILU 
estimators are more efficient er, when the 
autocorrelation level is very high ( 0.9)

. Moreov
ρ = under stochastic 

regressors the CORC estimator also competes with HILU 

 is large (n e leve

estimator. 
 Comparatively from table 5, it is observed that the 
same estimator(s) that is more efficient with fixed regressors is 
also more efficient with stochastic regressors except when the 
sample size  = 80) and th l of autocorrelation is 
either low ( 0.4)ρ = or high ( 0.8)ρ = . At these instances, 
the CORC / HILU estimator is more efficient with fixed 
regressors while the ML / MLGD estimator is more efficient 

ors. 

 size is large 
utocorrelation moderately high. 

the 

inde, 
 of Parameter Estimation in Regression Model to 

with stochastic regress
 
CONCLUSION 
 

 The performances of estimators of linear model in the 
presence of autocorrelated error terms with stochastic 
regressors are often much lesser than that of the fixed 
regressors on the basis of finite properties of estimator criteria. 
However, the estimators’ performances in terms of their 
efficiency are much alike except when the sample
and the level of a
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APPENDIX: 

 
TABLE 1: Sum of the estimated criteria of the model parameters when n = 20 

 
Sum of Biases Sum of Variances Sum of Root Mean 

Squared Error 
ρ  Estimator 

Fixed Stochastic Fixed Stochastic Fixed Stochastic 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.238270 

.204020 

.205320 

.234019 

.233891 

.038352 

.047266 

.050004 

.039626 

.037927 

5.775682 
5.798128 
5.789748 
5.745688 
5.744684 

.166334 

.175474 

.180270 

.146264 

.145209 

2.984762 
2.941968 
2.940498 
2.924859 
2.924527 

.656117 

.709747 

.724220 

.630946 

.627941 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.266471 

.039216 

.186433 

.216507 

.218063 

.056133 

.125415 

.073298 

.027413 

.041021 

6.153009 
7.181041 
5.956764 
5.834747 
5.846870 

.363389 

.653176 

.388445 

.205884 

.187885 

3.263503 
3.157918 
2.917448 
2.881965 
2.885169 

1.043938 
1.224348 
.993977 
.770204 
.734114 

 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.281376 

.124364 

.239270 

.226088 

.229164 

.067919 

.839709 

.068723 

.047919 

.053341 

6.984565 
8.636493 
5.998021 
6.385660 
6.396638 

.979242 
78.423288 

.451160 

.657157 

.661847 

3.502758 
3.392219 
2.908556 
2.973699 
2.977209 

1.607896 
9.314332 
1.029051 
1.152051 
1.155442 

 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

.283102 

.662101 

.266153 

.252761 

.249847 

.080187 

.406078 

.036515 

.074358 

.072162 

38.345911 
43.485020 
30.009107 
36.939508 
36.939690 

31.889861 
29.826651 
24.180186 
30.899853 
30.989355 

7.094184 
7.067019 
5.913894 
6.499316 
6.500296 

6.389459 
5.859107 
5.301591 
5.932051 
5.940578 

 
 
 

TABLE 2: Sum of the estimated criteria of the model parameters when n = 40 
 

Sum of Biases Sum of Variances Sum of Root Mean Squared 
Error 

 
ρ  

 
Estimat

or Fixed Stochastic Fixed Stochastic Fixed Stochastic 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.247033 

.240610 

.240863 

.239337 

.239800 

.019700 

.024383 

.024651 

.019273 

.018713 

5.667157 
5.639120 
5.639213 
5.646078 
5.645847 

.068791 

.053530 

.052998 

.051251 

.050760 

     2.776989 
2.721794 
2.721970 
2.720489 
2.719910 

.411387 

.379146 

.377509 

.356836 

.355102 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.279389 

.225009 

.225662 

.243775 

.245195 

.045788 

.027036 

.030867 

.021199 

.025081 

5.821598 
5.651256 
5.650916 
5.697144 
5.700142 

.142195 

.053457 

.061062 

.060774 

.064486 

2.999537 
2.675785 
2.675680 
2.686009 
2.687561 

.642281 

.400956 

.425629 

.424054 

.435030 
 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.343057 

.226712 

.224773 

.276233 

.276014 

.086436 

.027416 

.027344 

.050594 

.049323 

6.099065 
5.757145 
5.741233 
5.921211 
5.912873 

.354921 

.134072 

.107847 

.241752 

.231940 

3.175278 
2.686770 
2.682936 
2.724562 
2.722778 

1.010561 
.566352 
.522869 
.705002 
.694261 

 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

.760960 

.511734 

.501084 

.671973 

.665383 

.456681 

.370717 

.248016 

.423473 

.418786 

29.513130 
159.821391 
22.810143 
29.416089 
29.144429 

22.885019 
16.674900 
16.397971 
22.913213 
22.647244 

6.301095 
12.926464 
5.073257 
5.735637 
5.709859 

5.419174 
4.326374 
4.283857 
5.032298 
5.004314 

 

  



TABLE 3: Sum of the estimated criteria of the model parameters when n = 80 
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Sum of Biases Sum of Variances Sum of Root Mean 

Squared Error 
  
ρ  

 
Estimator 

Fixed Stochastic Fixed Stochastic Fixed Stochastic 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.250802 

.252363 

.252816 

.252489 

.252547 

.014099 

.017475 

.018032 

.015358 

.016199 

5.636964 
5.606360 
5.608606 
5.627886 
5.628093 

.035007 

.025552 

.025365 

.024661 

.024715 

2.684490 
2.644359 
2.645570 
2.649754 
2.649549 

.286915 

.254305 

.253706 

.242854 

.243370 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.263009 

.240028 

.236382 

.247864 

.246783 

.037144 

.020998 

.024039 

.013629 

.012750 

5.678403 
5.576679 
5.583061 
5.668202 
5.663375 

.085684 

.025315 

.026128 

.024962 

.025273 

2.812667 
2.611712 
2.613064 
2.632163 
2.631302 

.475116 

.276711 

.281463 

.274328 

.276023 
 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.265469 

.234145 

.215455 

.259666 

.254529 

.055593 

.028050 

.043050 

.028731 

.025007 

5.730489 
5.570998 
5.581487 
5.800086 
5.782619 

.187614 

.061649 

.062544 

.096059 

.090554 

2.916687 
2.602313 
2.603192 
2.652877 
2.648944 

.752543 

.392062 

.395977 

.460007 

.450261 
 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

.565490 

.419035 

.328511 

.545399 

.515371 

.414638 

.201564 

.270800 

.368202 

.346511 

27.642830 
16.338757 
7.995106 

25.739784 
26.498670 

21.321966 
10.815012 
8.112876 
19.552746 
20.258198 

5.981096 
4.289645 
3.070842 
5.328961 
5.400255 

5.290383 
3.459889 
3.025455 
4.602012 
4.679430 

 
 

TABLE 4: Summary of the more / most efficient estimator(s) 
 

Regressors Sample 
size (n) 

 
ρ  Fixed Stochastic 

0.4 ML/MLGD ML/MLGD 
0.8 ML/MLGD ML/MLGD 
0.9 HILU HILU 

 
20 

0.99 HILU HILU 
0.4 ML/MLGD ML/MLGD 
0.8 CORC/HILU CORC 
0.9 CORC/HILU HILU 

 
40 

0.99 HILU HILU 
0.4 CORC/HILU ML/MLGD 
0.8 CORC/HILU ML/MLGD 
0.9 CORC/HILU CORC/HILU 

 
80 

0.99 HILU HILU 
 
 

 
TABLE 5: Bias of β  with fixed regressor when n = 20 and R = 120. 

 
ρ  Estimator BB0 BB1 BB2 SBIAS 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.218460 

.182840 

.184910 

.212750 

.213070 

-.006482 
-.017640 
-.017215 
-.019451 
-.018807 

-.013328 
.003540 
.003195 
-.001818 
-.002014 

.238270 

.204020 

.205320 

.234019 

.233891 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.232580 

.038880 

.176440 

.208870 

.209900 

-.011302 
.000311 
.006256 
.005978 
.006465 

-.022589 
-.000026 
.003738 
-.001659 
-.001698 

.266471 

.039216 

.186433 

.216507 

.218063 
 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.249260 

.118030 

.232320 

.222830 

.225710 

-.006339 
.001118 
.000479 
.001941 
.002104 

-.025777 
.005217 
.006471 
-.001317 
-.001351 

.281376 

.124364 

.239270 

.226088 

.229164 
 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

.251330 

.644360 

.254380 

.238320 

.235750 

.007021 

.013240 

.011488 

.011103 

.011575 

-.024751 
.004501 
-.000285 
-.003338 
-.002522 

.283102 

.662101 

.266153 

.252761 

.249847 
 

  



TABLE 6: Variance of β  with fixed regressor when n = 20 and R = 120. 
 

ρ  Estimator VB0 VB1 VB2 SVAR 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

5.589455 
5.641770 
5.633298 
5.594737 
5.593811 

.097461 

.080830 

.080601 

.078916 

.078683 

.088765 

.075528 

.075849 

.072035 

.072190 

5.775682 
5.798128 
5.789748 
5.745688 
5.744684 

 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

5.793627 
7.055148 
5.833769 
5.718863 
5.730682 

.211262 

.058578 

.056623 

.056167 

.056453 

.148120 

.067315 

.066372 

.059716 

.059735 

6.153009 
7.181041 
5.956764 
5.834747 
5.846870 

 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

6.545189 
8.525999 
5.886957 
6.280947 
6.291375 

.268890 

.051646 

.052009 

.051563 

.051390 

.170486 

.058849 

.059055 

.053150 

.053873 

6.984565 
8.636493 
5.998021 
6.385660 
6.396638 

 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

37.905503 
43.384100 
29.912821 
36.849624 
36.849352 

.273501 

.044421 

.043909 

.043389 

.043932 

.166907 

.056499 

.052377 

.046496 

.046406 

38.345911 
43.485020 
30.009107 
36.939508 
36.939690 

 
 

 
TABLE 7: Root mean squared of β  with fixed regressor when n = 20 and R = 120. 

 

ρ  Estimator RMB0 RMB1 RMB2 SRMSE 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

2.374275 
2.382268 
2.380649 
2.374868 
2.374702 

.312255 

.284853 

.284424 

.281592 

.281135 

.298233 

.274847 

.275425 

.268399 

.268689 

2.984762 
2.941968 
2.940498 
2.924859 
2.924527 

 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

2.418206 
2.656437 
2.421756 
2.400519 
2.403069 

.459772 

.242029 

.238038 

.237072 

.237687 

.385526 

.259451 

.257655 

.244375 

.244414 

3.263503 
3.157918 
2.917448 
2.881965 
2.885169 

 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

2.570471 
2.922316 
2.437402 
2.516068 
2.518396 

.518585 

.227260 

.228055 

.227084 

.226702 

.413703 

.242644 

.243099 

.230547 

.232110 

3.502758 
3.392219 
2.908556 
2.973699 
2.977209 

 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

6.161872 
6.618104 
5.475174 
6.075065 
6.074943 

.523020 

.211178 

.209859 

.208595 

.209919 

.409292 

.237737 

.228860 

.215655 

.215434 

7.094184 
7.067019 
5.913894 
6.499316 
6.500296 

 
 

TABLE 8: Bias of β with stochastic regressors when n = 20 and R =120 
 

ρ  Estimator BB0 BB1 BB2 SBIAS 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.007344 
-.014375 
-.017108 
.008449 
.007297 

-.029209 
-.018075 
-.018296 
-.024703 
-.024030 

.001799 
-.014816 
-.014600 
-.006475 
-.006600 

.038352 

.047266 

.050004 

.039626 

.037927 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.020933 
-.093311 
-.031898 
.004288 
.009819 

-.018791 
-.010060 
-.008305 
-.012049 
-.011101 

-.016409 
-.022044 
-.033095 
-.011076 
-.020101 

.056133 

.125415 

.073298 

.027413 

.041021 
 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.038194 

.806880 

.035737 

.023303 

.028056 

-.004922 
-.003197 
-.003658 
-.005196 
-.005956 

-.024803 
-.029632 
-.029328 
-.019420 
-.019329 

.067919 

.839709 

.068723 

.047919 

.053341 
 
 

0.99 

OLS 
CORC 
HILU 
ML 

 

.055476 

.377050 

.006200 

.049108 

.047197 

.004100 
-.003457 
-.004365 
-.003146 
-.002862 

-.020611 
-.025571 
-.025951 
-.022104 
-.022103 

.080187 

.406078 

.036515 

.074358 

.072162 
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 TABLE 9: Variance of β with stochastic regressors when n = 20 and R =120 
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ρ   Estimator VB0 VB1 VB2 SVAR 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.008582 

.026956 

.031960 

.012941 

.012628 

.076754 

.064870 

.065082 

.059106 

.058566 

.080999 

.083647 

.083228 

.074218 

.074015 

.166334 

.175474 

.180270 

.146264 

.145209 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.104922 

.531943 

.281693 

.107592 

.102914 

.119527 

.044476 

.043200 

.040263 

.039077 

.138941 

.076757 

.063553 

.058029 

.045895 

.363389 

.653176 

.388445 

.205884 

.187885 
 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.667371 
78.332465 
.359883 
.581877 
.586503 

.145056 

.038960 

.039142 

.035551 

.035784 

.166815 

.051864 

.052136 

.039729 

.039560 

.979242 
78.423288 
.451160 
.657157 
.661847 

 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

31.594642 
29.750583 
24.104022 
30.828288 
30.917592 

.135223 

.036910 

.037053 

.034149 

.034183 

.159995 

.039158 

.039112 

.037415 

.037579 

31.889861 
29.826651 
24.180186 
30.899853 
30.989355 

  
 

TABLE 10: Root mean squared error of β with stochastic regressors when n = 20 and R =120 
 

ρ  Estimator RMB0 RMB1 RMB2 SRMSE 
 
 

0.4 

OLS 
CORC 
HILU 
ML 

MLGD 

.092928 

.164812 

.179591 

.114070 

.112610 

.278580 

.255337 

.255767 

.244369 

.243193 

.284609 

.289598 

.288862 

.272507 

.272138 

.656117 

.709747 

.724220 

.630946 

.627941 
 
 

0.8 

OLS 
CORC 
HILU 
ML 

MLGD 

.324592 

.735289 

.531705 

.328040 

.320952 

.346237 

.211133 

.208012 

.201017 

.197990 

.373109 

.277926 

.254260 

.241147 

.215172 

1.043938 
1.224348 
.993977 
.770204 
.734114 

 
 

0.9 

OLS 
CORC 
HILU 
ML 

MLGD 

.817820 
8.887267 
.600966 
.763164 
.766348 

.380894 

.197408 

.197876 

.188621 

.189259 

.409182 

.229656 

.230209 

.200265 

.199835 

1.607896 
9.314332 
1.029051 
1.152051 
1.155442 

 
 

0.99 

OLS 
CORC 
HILU 
ML 

MLGD 

5.621185 
5.467426 
4.909589 
5.552540 
5.560559 

.367750 

.192151 

.192541 

.184822 

.184908 

.400525 

.199529 

.199462 

.194689 

.195110 

6.389459 
5.859107 
5.301591 
5.932051 
5.940578 

 
 
 
 
 
 

  


