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ABSTRACT

In this paper we study the field structure and the heat transfer at the walls of two-component plasma. The flow is induced
by two horizontal walls moving relative to each other along their common axis in the presence of a-uniformly apphed transverse
magnetic field and the analysis made under the following assumptions: (i) The flow is viscous and incompressible (ii) The flow is
fully developed. (iii) The temperature varies linearly along the wall. (iv) The temperature difference between the walls 1s not large
enough to cause free convection current to flow. Exact solutions for the velocities and temperatures for the ionized and neutral
particles-and the induced magnetic field are derived. These together with the heat transfer are discussed quantitatively

KEYWORDS: Couette flow, two-component plasma, field structure. heat transfer, Hartmann number, Magneto hydrodynamic,
Nusseit number

INTRODUCTION

Studies of MHD flow of electrically conducting viscous fluids within boundaries have important practical applications in the
design of MHD generators, cross field accelerators, shock tubes and pumps. Chang and Yen (1962) analyzed the effect of
conducting walls on such flows and found that the viscous drag and the mass flow rate decrease while the magnetic drag increase
with the sum of wall conductance ratio. An extension to this was done by Rayleigh and Snyder who considered heat transfer. One
of the initiators of MHD couette flow studies was Lehnert (1952) and later Yen and Chang (1964) studied the effect of wall electrical
conductance and came up with the result that there was distortion of the velocity profile. Recently the problem of heat transfer in
MHD couette flow as affected by wall electrical conductance with temperature varying linearly along the walls and in the presence
of a constant heat source was studied by Seshagiri Rao (1979). In all these studies as is usual in classical magneto-
hydrodynami¢s and plasma physics, fully ionized plasma is assumed. This simplifies most of the difficult problems but deviates
from rea! ife situations. The more realistic situation is the partially ionized plasma with attendant neutral-ionized particles
interaction. Such studies have been undertaken by Chhjlant and Vaghela (1987) who  studied the gravitational stability of
magnetized self gravitating two-component plasma of finite conductivity in a porous medium. Also Bestman (1989) studied the
thermal stability of radiating two-component plasma in a porous medium. Warmate and Bestman (1996) also studied the transient
flow of fully developed two-component plasma in a magnetized cylinder.

In this paper we intend to extend the work of Seshagiri Rao (1979) to two-component plasma by studying the field
structure and then the heat transfer
The following procedure has been adopted. first the formulation of the probiem is done with dernvation of the resulting governing
equations and solutions for the velocity and induced magnetic field. Using these solutions the express:on for temperatures are
obtained Finally the results are presented with a quantitative discussion of the field structure and heat transfer at the walls for the
ionized and neutral species of the plasma.
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Fig. 1: Coordinate system of parallel plate couette flow
FORMULATION

We consider the flow of two-component plasma (ionized and neutral species) with the ionized specie electrically
conducting The flow is viscous, incompressible and bounded by two horizontal paralie! plates moving relative to each other aiong

their common axis with velocities ¥ L/, The plates are maintained at temperatures T and To (T, > To) and we employ a cartesian

coordinate system (x, y'. 2') with one plate situated at y =L while the other is at y=-L

Along the x and z directions they are infinite and a uniform magnetic field is apphed along y which is in the vertical upward
direction.

Assuming a steady and fully developed flow along x, all the physical vanabtes will depend on y except the temperature Such a
flow 1s governed by the following equations

Contmuity‘
Vel 0 (h
Modified Nﬁvner- Stokes equation
ool e o NU o d I I(il ) {2)
. - .. ol ./”_ 5
Energy equation FRIN ¢ _,,‘l e\ fl o kT2 e v (3)
Lo, (o

where J, = 0. the subscripts and later superscripts i. n are ionized and neutral components respectively.
a

is the Ohmic dissipation. I~’(i 17,,) is the collision frictional force term.
The electromagnetic field equations take the form:

VxH =J (4)
VeB=0.VeD =0 Y
VxE :—iB =0 {0)

ot
B=uH . D-=¢E (7
and the modificd Ohms law J - o{f « 4, |7 x H' |} (%)

The equation of interaction between flow velocity and magnetic field is obtaincd from 1 gs. (41 (6) and (8)
as ' :
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Vx(VxI?I')=ym0'Vx(I7'xI-—I') 9
From Egs. (5) and (7) we get H, = constant and this we write as Ho. the applied magnetic ficld.

Consequently we set
=UWy . A =HY+H,j (10)
i

J are respectively unit vectors along x and y directions. 1t can be deduced that

In

where H is the induced magneuc field and
all variables are functions of y only, except T
which has an additional dependence on x. Splitting Eqs. (2), (3) and (9) into ionized particle and neutral specie equations and
writing them in component form gives the

dimensional equations:

':,'

u,H, d—H— + 4 d-b,‘ + fp /)’(l,«',,‘ - b','): 0 (I
d; dv-
f, (/ -
Mooa - Lo f (12)
f‘,‘«+,um0'H(,di,’ =0 (13)
av- dv
or  (&T &T dv’ Y t(dH Y
CU —~=k —t— [+ i Lo+ — A 14
pl ,’ 1 ax l[ ax_ a—\‘_ ] /I[ ‘{.‘) ) G[ ‘i‘)} J Q ( )
.oT, oT T JUY
CU T =f | Sony o S+ i5
P = (&\" ay_J;((,yJ Q (15)

where the collision frictional force which is the coupling factor between the iswiz:d and neutral species is

definedas  F(7)= £,p87, - V') (Chhajlani and Vaghela, 1987)
To faCIlltale analysis it is expedlent to introduce the non-dimensional variablcs:

U
y‘U——'i' Hx

Xy= - » T - v
) "= H,

0

Substituting this into Eqgs. (11). (12) and (13) we get

v, +R,N aH, S 4 (S A T (16)
ay’ dy
dU, e, -v)=0 an
dv’ 2]
({2H dl
= -0 (18)
dl M 1%

where we have introduced the following parameters defined as follows:

L H ! S AW v
R, =L M) vt oA 0,_,,~:L. Y
i v pl p: U(l ‘l;,r A
]
A=
H,0
The three equations (16), (17) and (18) are subject to the following boundary conditions:
(i) Hydrodynamic U,=F1 on y=tl '
(i) Magneto-hydrodynamic (Seshagiri Rao, 1979) -
dH 1 '
—+—H_ =0 ony=I|

dy ¢,
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a1 H, -0 ony=-I

dv ¢,

not

subscripts u and | stand for upper and lower plates and ¢,L ;o

We now solve the equations sumultaneous\ly and after integration, substitution and reconciliation of the constants we get the
expressions

U = ACosh(my)+ ASinh(my)+ 1.Cosh{m,v) - A,Sinh(m.v)+ A, (19)

U, = B ACosh(my)+ B ASinh(my)+ B, A,Cosh{m.y) + B, A,Sinh(m,y)+ A, 20

0= M ,,R\,!f ASinh(m v} A.Cosh(m,v) . ASinh{m v) , A 'u,s-h(m:_r)] a4 o)
L m, m, m, ",

Ay A2 A3 Ay Ast Ag are arbitrary constants which are determined from the boundary conditions as a
6X6 determinant.

FLUID TEMPERATURE UNDER VARIABLE WALL TEMPERATURE

We assume that the temperature varies linearly along the wall with a constant heat source We therefore set

F(v.vy T(vy-al (22)
ara e
Loxs Ly=T( L)+xt T, (23)
T ox.L)=1_(L)-x1" =T, (24)
T, > T,
Differentiating Eq (22) twice and substituting in Eq (14) and (15) we get
= T de T di .
pCUT :k,(—,,’ c S L S0 (25)
dv o v
o o /I
p,CU =k, il—-l',' . vu,,! ‘ S0 126)
dv v
In addition to the non-dimensional varables we include these tw.
o 1
o vy ] o=
17 1 T, 1

|
Egs. (25) and (26) vield the tollowing dimensionless cquations aitcr substituting the aboy e dimensionless
variables

0o ldeY ’
CO g o g i <0 (27
dv dv T v
‘() ”"' I \\,‘ . .
d g d T B =0 (28)
dv v
with the additional parameters defined as follows
. U, ) en , H, R, Pr 1o
/;’l - ’“L o Prt ket /;‘ = e /i !
k AT -1)) Tookd{l, 1)) \r
) I B AN A A
/ A}:.IM B = g r Re''l
kr n(7| - 7(#) k/,u
e r: p



HEAT TRANSFER IN MHD COUETTE FLOW OF A TWO-COMPONENT PLASMA WITH VARIABLE WALL TEMPERATURE 443" :

2 2 . -
Substituting for [%y(—]’—] and [dZ"] in Eg. (27) and integrating twice we get an equation for 6 with two’

arbitrary constants subject to the boundary conditions:
6 =0on y=-1
6=1on y=I

This gives the final expression for 6, as

i': {C osh(m,v)-Cosh(m, )} + i {Sinh(ml y)- ySinh(m, )} +

1 | m, m,
6, =’,','(I+.V)+ﬂ4 A A -
- 2 A{Cosh(m.y)- Cosh(m, )} + = {Sinh(m,y)~ ySinh(m, )} + ?5 (y: - I)

m, B

_'3_31(),2 _1)_

2
A_lz 0sh(2m, y) y C osh(2m,) 1 . A_Z2 Cosh(2ml y) B “_ B (.‘osh(Zml) N _l_ J
, Nw: am’ 2] 2 am} 2 am® 2
(6, M m?) 2 , 2
A_ Cosh( 2m2y i Cosh(Zmz) 1 . A Cosh(2m,y) oy Cosh(2m,) N 1
| 2 am;} 2] 2 4m,’ 2 4my 2] |
i {Smh(2m| y)- ySinh(m,)}+ ]
AA Cosh[y(m, +m, ] (oshLv (m, = m, )] Cosh(m, + m, ) (osh (m, - m,
i (m, + m, ) —m, ) (m, + m.y - m,
AA Smh[y m +m, )] Smh[v {m, - m7)] ySinh(m, + m,) vSinh{m, - )
BiM M U (my +m, ) (m, = m,y (m, +m,) (m, —m,}
T AA Smh[v(m, + m, ] S'mh[\ m, —m, )] ySinh(m, + '"’), ySinh{m, — m,
e (m, +m,y (m, —m,) (m, +m.y (m, —m, )’
AA Cosh[y m, +m,) ] C mh[) (m, —m, ] Cosh(m, + m,) C mh (m, -mz
w (m, +m,Y (m,—m,) (m, +m,) (m, - m,
A3A {S‘mh(Zm, — ySinh(2m, )}
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[ 4m [ Cosh(2m, y) ¥ Cosh(zm,)+ 1, A’m? [ Cosh(2m, y)+ ¥y’ Cosh(2m) 1| .\
2 am’ 2 4m’ 2 2|7 Am’ 2 am’ 2
A'm) | Cosh(2m,y) y* Cosh(2m,) LI A’m,’ | Cosh(2m,y) A y Cosh(2m,) 1 s
2 am,’ 2 am; 2 2 4m)’ 2 4m,; 2
('oshLv(m, +m, )] _ Cosh[y(m, -m, )] _
A4 ¢ . (rm, +m, y (m, "’"2)2
——={Sinh{2 — ySinh(2 A A;mm,
4 Sinh{2m,y)~ ySinh(2m,)} + 4 I, ~ g'().vh(m, +m,)  Cosh(m, —m,) !
(ml +m, )2 (m, — m, y
B . Admm Sinh[v(ml +m, )] . Sinh[y(m, - m, )] ~ vSinh(m, +m,) - _\'.S‘inh(nil - m,) N
N (m, +m,y (m, —m,¥ (m, +m,) (m -m,)
AAmm Sinh[r(ml +m, )] _ Sinh[y(m, — i, )] ~ vSinh(m, + m, ) . ySinh(m, —m,) .
I (my +my) (m, - m, ) (m, +m,y (m, -m,)
. ‘4
Coshly(m, +m,)] Cosh{y(m, —m.)] Cosh{m +m.)  Coshim, - m,
A, Amm Mt AP (IS ! +
F (m +m,) (m,-m,Y (m, + m,y (m, —m,)

ﬁi‘ﬁ {.S:inh(Zm2 , )'— vSinh(2m, )}

In similar vein we deduce 6,

B'{' {Cosh(m,y)~ Cosh{m, )} + B'/iz {Sinh(m,y)~ vSinh(m,)}+
1 m,- h ’
8, =—(+y)+ 8" , _ _
2 + B’—/:‘ {Cosh(m,y)~ Cosh(m, )} + B, 'z‘ {Sinh(m,v)— vSinh(m, )} + 112_‘_(),2 1)
m, m
' Coshlzmy) " ]|
BiA’m/’ | Cosh(2m,y) _ _)_zi _ Cosh(2m,) N I N B’A’m’ dm,’ 2
2 { amy’ 2 4m® 2 2 Cosh(2m) 1
dm? 2
4 . 'Q);si_h(Zm_,_r) N L\
" LN P ' PR 242, A 2
_ —’B’—(yz —l)— Bl + B, A4, m, [935_/1(213@) ) ¥y« o.sh(22mz) . ! ' B, 4, m,” ! m, '
2 2 1 dm,” 2 4m, 2 2 |« 'vuﬂ{@r&) 1
| | $m, 2

+ B'—f:'—"—— {.S'iﬁh(Znu) — ySinh(2m, )
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B,B, 4, Amm, Cosh[y(ml + :712 )] _ ('n‘s'h[,v(m, - :nz )] B Cosh(m, + r:)z ) N (_»ursh(m1 T,)} R 1
’ | (m+m) (m, —m,) (m, +m,Y (m, -
B B,A Amm, Sinh[v(m, + m, ] Sinh[y(m, —m, )]_ ySinh(m, +:nz) ySinh{m, - m, }
g (m, +m.y (m, - mz) (m, + m, ) (m, —m,
|
BB, A, Amm, Sinh[y(m, + m, ) B Sinh[y(m, - tnz )] B ySinh(m, + :n,) N ySinh(m, —m,)
" (m, +m, Y (m, - m,) (m, + m,) (m, = m, )
B.B,A, A,mm, C osh[y(m, +2m, ] (oshLv m :n, ] Cosh(m, + m,) (osh mz)
(m, +m, ) (m, —m, ) (m, + mz)

-5 {B ‘:A {Sinh(2m,y)— vSinh(2m, )}]

RESULTS AND DISCUSSION

In the previous-two sections we have formulated and solved exactly for the velocity.' temperature and induced magnetic
field for parallel plate couette flow of a two-component plasma A primary observation is the separation of the ionized specie from
the neutral.

Fig. 2 shows the field structure of the ionized and neutral species To have a feel of the varying parameters used, numerical results
are presented with the constants as follows:

N=2.0, Pr' =Pr" =0.71 ,Ry=3.0, Re' =Re" = 1.0 ,Ry=20.M=30, (=M, =0 =0," =10,
o =Ec"=0.1, B =" =20 ,B=1.0 (50% ionization),

¢, = ¢, = 1.0 (upper and lower walls are conducting)

Uin
H
V\\\ 0.75 ! -
< .
) \\ \\_\ oo

Fig. 2a: Velocity profile in MHD Couette flow of a two-component plasma

Fig. 2(a) shows the velocity profile This agrees perfectly well with the resuit of

Shih-l Pai (1961) where-when the Hartmann number Rn which is M in our probtem equals zero correspond to the neutral particies.
-Also the boundary condition is

U = F1 on y =F] which rotates our result 180° clockwise

At the centre of the channel U, ={/ W= 0 meaning the ionized and neutral particles are stationary. Moving up or down the channel

the particles separate with the neutral specie speed higher than the ionized This is also in good agreement with the resuit of )
Alabraba et al (2002)
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Fig. 2(b) depicts the induced magnetic field which is almost constant and in the ~i direction.

Hx
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-1 -0.5 0.5 1
-14
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\ -3r /
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Fig. 2b: Induced magnetic field profile in MHD Couette flow of a two-component plasma.

Fig. 2 (c) shows the temperature profile with 9, always higher than 9,, except at the walls. At a distance about a quarter up the
channel @, = | 1.e. the temperature of the hotter wall and &, = 2 Just beyond half the channel 6, peaks at 2.6 and 6, at 1.6.

qin )
4 A 6"
0.5F
Y
-1 -0.5 0.5 1

Fig. 2¢c : Temperature profile in MHD Couette flow of a two-component plasma

HEAT TRANSFER

The heat transfer in terms of the Nusselt number at the walls for the ionized and neutral particles is defined as:
FL ( or

Nu" +1 = - i
ll -7;)\\ a},

] (Seshagiri Rao. 1979)
¥ =t/

In Fig. 3 we have plotted the Nusselt number Nu' against the Hartmann number M with R,, = /3, = 2.0 for the 1onized particles
at the upper and lower walls.
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Fig. 3a: Nusselt number versus M for Ry = 2.0, 5, =2.0

Fig. 3 (a) shows the case when both walls are either conducting or non conducting. Nu' increases slowly at both walis but with
that at the lower wall higher.
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Fig. 3b: Nusseit number versus M for Ry = 2.0, ,' =2.0

Fig. 3 (b) shows when the upper wall is conducting and lower wall is non conducting. We notice that Nu' increases sharply at the
lower wall but steadily at the upper wall

10y 4, =1.0x10"
4 =10

N

Nu'-1

1~y

}

Fig. 3c : Nusselt number versus M for Ry = 2.0, ;' =2.0
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Fig 3 (c) is the case when the conductivity of the walls are reversed when compared with that in Fig. 3 (b). NU' increases sharply at
the upper wall and steadily atthe lower wall.

The results in Fig. 3 (b) and 3 (c) shows that the Nusselt number increases sharply at the non conducting wall and steadily at the
conducting wall when the walls are such that one is conducting and the other non conducting.

Finally Fig. (4) shows the Nusselt number Nu'" for both the ionized and neutral particies plotted against the heat source
parameter 3,"” withRu=20andM =30

- Nuin
5[-'
‘ Nu" @
4 )- Nu'
3 e
2
b3in
2 3 4

Fig. 4a: Nusselt number versus ,8,,'" at the upper wall for Ry =2.0, M= 3.0

Nuin ) Nu"

b3in

Fig. 4b: Nusselt number versus [3,” at the lower wall for Ry =2.0, M= 3.0

Fig. 4(a) shows a steady increase in Nu'" at the upper wall with the value of the ionized just higher, while Fig 4(b) which is at the
lower wall shows similar increase but with a bigger difference.

This suggests that the rate of heat transfer from the upper wall to the particles i1s not significantly different for the 1onized and
neutral while the rate of transfer from the particles to the lower wall is significantly different and higher for the ionized than the
neutrals.

CONCLUSIONS

In conclusion we deduce the following in the problem ci heat transfer in MHD couette flow of two-component plasma vith
variable wall temperature:

e There is a clear seperation of the neutral species from the 10nized species with the former having a ugher speed. (This speed
difference is due to collision effects)

e There is an aimost constant induced magnetic field in the reverse direction of / . v
® The temperature of the ionized is always higher than the neutral except at the walis 1 This is due to joule heating on the ionized
specie)
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e The Nusselt numter increases slowly with Hartmann number at the walls when both walls are conducting or not, but when one
of the wall 1s conducting and the other non conducting, it increases sharply at the non conducting wall and steadily at the other wall.

APPENDIX
2 2 2
& R, Mo N
=l 0B+ L RIM N b=t A% T
Z B
a+‘ﬂaz—4bi a—,ﬂaz—4b$
m =4———-7" m, =—————
‘ 2 2 2
m’ LRy ‘M N m’ R,M,N
B =l-——+ By =1-——+ M
al ﬁ 0' ﬂ 'al-ﬂ 0: ﬂ
u dimensional velocity component Pr Prandtl number
X, y',z') dimensional cartesian coordinates Q volumetric heat source
k. thermal conductivity M Hartmann number
D dimensional electric displacement f collision frequency
C specific heat at constant pressure Ry Magnetic Reynolds number
Ec Eckert number Ay Alfven speed
N constant transverse magnetic field N Ratio of Alfven to wall velocity
. Ry Magnetic pressure number M, dimensionless parameter
To constant temperature at the lower wall Ty constant temperature at the upper wall
. ,,Greek symbols
0 electrical conductivity of ionized particles M coefficient of viscosity
o electric permittivity Mm magnetic permeability
:;;\‘r .. .dimensionless temperature gradient ' a,.,,z Wormesley frequency type parameter
o,, " electrical conductance of plate’s @,, electrical conductance ratio
v kinematic viscosity B  degree of ionization
p hydrodynamic density : B; -heat source parameter

A magnetic diffusivity
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