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ABSTRACT 

 
The study and understanding of the social behavior of insects has contributed to the definition of some algorithms that 
are capable of solving several types of optimization problems. The most important and challenging problems that the 
ants encounters when routing through a network arc, is their ability to searching for the path with a shorter length as 
well as to minimize the total cost incurred in the process of routing through the network. In this paper, we introduced 
some features to the existing Ant Colony Optimization (ACO) algorithm to help tackle this problem. First, we defined 
two kinds of pheromone and then we also defined three kinds of heuristic information to guide the searching direction 
of ants for this bi-criteria problem. Each of the ants uses the heuristic types and the pheromone types in each iteration 
based on the probability, controlled by two parameters. These two parameters are adaptively adjusted in the process 
of the algorithm. Second, we used the information of the partial solutions to modify the bias of ants so that inferior 
choices will be ignored. Finally, we tested the performance of the experimental results of the algorithm in an 
application under different Deadline constraints and the performance of the algorithm prove to be more promising, for 
it outperformed the performance of most of the algorithm we downloaded on line. 
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INTRODUCTION 
 
The application of an Ant Colony Optimization (ACO) 
algorithm to a specific problem usually requires some 
customization of the method. Ranging from simple 
parameter specification to a more delicate problem 
modification, such as the design of operators or 
searching strategy. This is a crucial step for the success 
of the optimization (Runka, 2009). As one aims at 
maintaining the ability of the algorithm to perform a robust 
exploration of the search space (Ogban, Asagba and 
Owolabi, 2014), while granting it some specific 
information that helps to efficiently discover good and 
quality solution for a given problem. 
Ant colony optimization (ACO) algorithm draws its 
inspiration from pheromone-based strategies of the 
foraging process of ants. Initially, it was conceived to find 
the shortest path, soon after it was applied to different 
types of combinatorial optimization problems (Dorigo and 
Stuzle, 2004). Example of such situations addressed 
includes both static and dynamic variants of academic 
and real world problems. Usually, the problem is mapped 
into a fully connected graph. When seeking for a solution, 
the ants deposit pheromone while traveling across the 
graph edges, thus creating a virtual trail (Diosan and 
Oltean, 2009). A solution to the given problem will 
emerge from the interaction and cooperation that is made 
by the ants. 
 
 
 
 

 
In this paper, we propose a framework to discover the 
effectiveness of the pheromone updating strategies for 
Ant Colony Optimization (ACO) algorithm. In the 
approach, the algorithm seeks to fine candidate solutions 
that can be used by the Ant Colony Optimization (ACO) 
algorithm to apply the Travelling Salesman Problem 
(TSP) (Diosan and Oltean, 2006). We will also use 
different instances to access the effectiveness of the 
proposed approach. 
Finally, this paper is structured as follows: In section 2, a 
general description of an Ant Colony Optimization (ACO) 
algorithm was presented. Section 3 presents a detailed 
synopsis of the system used by ants deposit pheromone 
and the updating strategies. Section 4 reports the 
experimental results and analysis. Finally, section 5 
summarizes and conclusion and highlight future work. 
 
PROBLEM DEFINITION/FORMULATION 
 
Generally speaking, network flow application can be 
modeled as a Direct Acyclic Graph (DAG), G = (N, A). Let 
n be the number of nodes in the network with the set of 
nodes given as N = (n1, n2… nm) corresponding to the 
nodes on the network. And the set of arcs A represents 
precedence relations. And the arc is written in the form of 
(ni, nj), where ni is called the parent node of ni, and nj and 
nj is called the child node of ni. Typically, a child node in a  
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network cannot be executed until the execution of its  
parent node has been completed. The set of parent node 
of ni is denoted as pred (ni), and the set of the child node 
is denoted as succ (ni). A very good example of a 
network flow described by a Direct Acyclic Graph (DAG) 
is given in figure (1). 
For the sake of convenience, we have added to the 
Direct Acyclic Graph (DAG) nstart to represent the start 
node and nend to represent the end node. Also, for all ni, 
1≤ i ≤ mt is given, if an only if pred (ni) is empty. We also 
added ni to all succ(nstart), so that pred(ni) = {nstart}. 
Similarly, anywhere we see succ(ni) empty, we added ni 
to pred(nend), so that succ(ni) = {nend}.  
Furthermore, each node ni (1≤i≤n) has an implementation 
domain ni = {npi

1
, npi

2
… npim} where npji (1≤j≤mt) 

represents the node implementation and mi is the total 
number of available nodes implemented by ni. Also, 
denoted the total cost incurred in the process of npi

j
as ci

j
. 

Finally, the objective function of the scheduling problem 
is to find an optimal schedule {k1,….,km}, which means 
that ni is being executed by npi

kt
 (1≤i≤n), so that the total 

cost of the network flow incurred in the process is 
minimized as described in equation (1)  

Minimized cost =    

n     
∑ c���
i = 1  

                                            (1) 

Moreover, the end time of the whole network flow must 
not be later than the given deadline constraint (D). For 
(D) is the deadline constraint required for use. 
 
ANT COLONY OPTIMIZATION (ACO) ALGORITHM 
FOR NODE CONNECTION PROBLEM 
 

The general idea of Ant Colony Optimization (ACO) 
algorithm is to simulate the foraging behavior of real ant 
colonies. When a group of ants set out from their nest to 
search for food, they deposit some chemical substance 
called pheromone on the path to their food source. By 
sensing this pheromone on the ground, other ants from 
the same colony can follow the path to food source 
discovered by the ants (Oltean, 2005). As this process 
continues, most of the ants tend to choose the path to 
food with the shorter distance knowing that there have 
been huge amounts of pheromone accumulated on the 
path. This collective pheromone deposition and 
pheromone following behavior of ants becomes the 

inspiring source of Ant Colony Optimization (ACO) 
algorithm. (Runka, 2009) 
In this paper, we applied the Ant System (AS) algorithm 
which is the first Ant Colony Optimization (ACO) 
algorithm developed to tackle network flow problem. 
Informally, the algorithm can be viewed as interplay of the 
following procedure: 
(i)  Initialization of the algorithm. All pheromone 
values are parameterized and initialized. 
(ii) Initialization of ants. Let us assume that groups 
of M ants are used in the algorithm. At the beginning of 
each of the iteration, all the ants are set to an initial state, 
and each ant chooses a constructive type (say forward or 
backward) and a heuristic type (say duration – greedy, 
cost – greedy or overall – greedy), based on the 
constructive type. Each of the ants builds its tackling 
sequence accordingly. 
(iii)   Solution construction. M group of ants are set 
to build M solution to the problem and the construction 
procedure includes n steps. N is the number of nodes in 
the network. At each step, an ant will pick up the next 
node in its tackling sequence and map it to one 
implementation outside the node implementation domain 
using pheromone and heuristic information (Poli, and 
McPhee, 2008). The algorithm also estimates the earliest 
start time and the earliest end time in terms of the 
information of partial solution built by each ant. This 
information is what helps to guide the ant in its searching 
behavior. 
(iv)  Local Pheromone Updating. As soon as an ant 
finish mapping a node ni to npi

j
, the corresponding 

pheromone value is updated by a local pheromone 
updating rule.  
(v)  Global Pheromone Update. After all the ants have 
completed their construction, the global pheromone 
updating is applied to the best-so-far solution. The 
completion search time and the total cost of all the 
solutions are being evaluated and the pheromones that 
are related to the best-so-far solution is significantly 
increased. But in this case, some parameters are 
adaptively adjusted. 
(vi) Terminal Test. If the test is passed, the 
algorithm will end. Otherwise, the algorithm will step up to 
begin a new iteration. 

The flowchart of the algorithm is given in figure (1). 
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Fig. 1: The flowchart of the Ant System (AS) algorithm 

PHEROMONEDE POSITION/UPDATING STRATEGY IN A NETWORK: USING ANT COLONY                                                   217 

 



(vii)   Definition of Pheromone and Heuristic information 
 

The problem considered is a bi-criteria problem. Therefore, it requires two types of pheromone to be used in solving 
the problem. One of the pheromone quantities is used for road mapping (path creation) and the other pheromone 

quantity is used to check the time spent (duration). We denote these two types of pheromone as c�ij and d�ij(1≤ i ≤ n, 
1≤ j ≤ m1). While, initializing the algorithm, all pheromone values are initialized. That is, 

c�ij= d�ij,              d�ij= d�o, (1≤i≤n, 1≤j≤m1)                    (2) 

where c�ijand d�ij are two parameters representing the initial values for c�ij and d�ij respectively. Similar to the Ant 

Colony System (ACS) for Traveling Salesman Problem (TSP), we set c�o= 1(n. c
LB

) and d�o = 1(n.d
LB

). Note that c
LB

 
and d

LB
 are the lower bound estimation for the total cost respectively. Typically, c

LB
 can be set to the total cost when 

every service is set to its lowest-cost implementation and d can be set to the duration. So we have 

 c�o=1/(n.

n                                   
∑�min������ c� �

i = 1                            
�                        (3) 

 d�o=1/(n.d)                                                       (4) 

Note: the heuristic information for road mapping (path creation) service si to spi
j 
is denoted as ηij. Finally, we used 

three different kinds of heuristic information to guide the searching direction of ants namely: duration-greedy, cost-
greedy and overall-greedy. However, the definition is given below  

ηij =   

1
d�

� if selection type = duration � greedy!

1 c�� if selection type = cost � greedy             "
1 c��. d�

� if selection type = overall � greedy!
            (5) 

Following this definition, duration–greedy heuristic bias the implementation with the shortest execution time, Cost–
greedy heuristic prefers the length with low-cost and the overall-greedy considers the both factors. 
 
(viii)   Initialization of Ants 
At the beginning of each iteration, all ants are initialized and each ant chooses its type from any of the selection rule. 
Either from duration-greedy, cost-greedy or from the overall-greedy according to equation (6) 

Selection type =  

duration � greedy, 0 ' ran ' p�
cost � greedy, p� ' ran ' p(
overall � greedy, p( ' ran ' 1

                  (6) 

Where p1 and p2        (�0 ) p� ' p( ) 1� are two parameters and ran∊ [0, 1] is a random number. Apparently, the 
probabilities of choosing duration-greedy, cost-greedy, and the overall greedy are p1, (p2,-p1) and (1-p2) respectively. 
The selection type of an ant is corresponding to the type of heuristic information it used while constructing a solution. 
Furthermore, each ant has to select its constructive type of solution randomly (from either the forward or the backward 
ants) and builds its sequence of services. The tackling sequence is built following a simple illustration of a network 
flow application with 9 tasks is given below. 

 
Fig.2: A simple illustration of a network flow application with 9 tasks. 

 
Also, forward ant begins from the start nodestart and applies a random depth-first search to orderly connect all the 
nodes. For example, the possible sequence build by a forward ant in e-Economic workflow given by fig. 2 are 
(n1.n2.n4.n7.n9.n5.n3.n6.n8), (n1.n2.n5.n7.n9.n4.n3.n6.n8), (n1.n3.n6.n8.n9.n2.n4.n7.n5) and 
(n1.n3.n6.n8.n9.n2.n5.n7.n4), similarly, a backward ant begin its searching from the end node and uses a random 
backward depth-first search to orderly connect the nodes. The possible sequence build by the backward ant in the 
above example are (n9.n7.n4.n2.n1.n5.n8.n6.n3), (n9.n7.n5.n2.n1.n4.n8.n6.n3) (n9.n8.n6.n3.n1.n7.5n.n2.n4) and 
(n9.n8.n6.n3.n1.n7.n4.n2.n5) 
The reason for using a depth-first search scheme is the information of the partial solutions (that is the earliest start 
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probabilities of selecting inferior components. The reason for constructing the tackling sequences from both sides 
(forward and backward) is to diminish the influence exerted by the relative order of nodes. 
 
(ix)    Solution Construction 
 
After initialization, M ants set out to build solutions to the problem in a parallel order according to their tackling 
sequence. In step k (1.k.n), each ant picks up the k

th
 node from its tackling sequence and map it for an implementation 

out of the node implementation domain. Assume that an ant is choosing one node out of spi={spi
1
, spi

2
 spi

3
,……spi

m
} 

to map to si, the selection rule is as follow: 
Step 2: Evaluate the overall bias desirability of all implementation in terms of equation (6) 

Bij =    

�dΤ���, -η��. ,β η�� = 1
d�

�"
if the selection type of ant is duration � greedy; 

�cΤ���, 1cΤ��2,β η�� = 1 c��"
if the selection type of ant is cost � gree dy;           

�cΤ���, 1cΤ��2,β η�� = 1 1c�� . d�
�2,!

if the selection type of the ant is overall � greedy;

          (7) 

Where Bij represents the bias mapping of ni to npij(1≤j≤mi;)and are two parameters that determine the weight of the 
pheromone and the heuristic information respectively. 
Step 2: Adapt the values of Bij in terms of the information gotten from the partial solution. The earliest start time and 
the earliest end time of the node can be estimated for the current partial solution build by an ant. We denote the 
earliest start time of ni as ni.est and the earliest end time of ni as ni.eet. As the tackling sequence is built by depth-first 
search, it guarantees that a node is only considered by a forward ant until one of its parent nodes is considered. 
Similarly, a node is only considered by a backward ant until one of its child node is considered. We present a clear 
discussion of the situation with forward ant in the following text. However, the situation with the backward ant comes 
when regarding all parent nodes as child nodes and when regarding all children nodes as parent node. 
Therefore, the forward ant which is considered as ni ni.est can be estimated as follow 

ni.est = maxnk∊pred (nt) nk.eet           (8) 
For example, a forward ant uses the sequence of (n1. n2.n4.n7.n9.n5.n3.n6.n8) to build a solution for the workflow 
given in figure 2. After mapping all the nodes of the first branch, (n1.n2.n4.n7.n9) to create a corresponding 
implementation, we can then estimate n2.est = n1.eet, n4.est = n2.eet, n7.est = n4.eet, n9.est = n7.eet. Also, when 
considering the next node n5, we have n5.est = n2eet. On the other hand, it is also important to know that sometimes 
the earliest start time for the child node of ni may also have been estimated. For instance, when considering n5 in the 
same example given in the last paragraph written as n7.est (n7 will be the son of n5) because it has already been 
estimated. However, because the available time slot for n5 is limited by n2.eet and n7.est. We can then define slot as 
 

Sloti   =   

undi3ined, if ⩝ ni ∊ succ n�
nk. est has not been evaluated                                                             
�min7� ∈ 9:;;.�7��<7= 7�.>9� ?<9 @>>7 >A<B:<�>= nk. est� � ni. est

otherwise                                                                                                       
        (9) 

Based on this definition, if ni is mapped to spi
j
 to satisfy di

j
> sloti, then si.eet = si.est + di

j
 will be larger than at least one 

of its child’s estimated earliest start time. In this situation, the estimated earliest start time for all the child node of ni 
must be updated to be at least not smaller than ni.est. Otherwise, for all the implementations that will satisfy di

j
 ≤ sloti, 

will only be successful with the one with the lowest cost because all other choices will result to a higher cost solution 
with the same path created. Therefore, the ants will ignore these inferior choices by modifying the preferences Bi

j
 

using equation (10) 
 

Bij   =   

B��,
if d�

� > slot� or  slot� =   udi3ined
∑ B��                                               

∀ np�� 1d�� ' slot�2
if  d�

� '   slot� and  c�
� = min∀ 7GHI 1=HI � 9BJ�H2 c��

o                                                                                                                     
if d�

� ' slot� and  c�
� min∀  7GHI 1=HI � 9BJ�H2 c��

   (10) 

Step 3: An ant selects one implementation out of the following implementation 
Spi = {spi

1
, spi

2
…spi

m
} and map it to si in terms of the following selection rule: 

ni=    
arg max∀7GH ������L�" B��, if q ' qN

routlette wheel scheme, otherwwise
                            (11) 

pi
j    

=  
OHP

∑
�L
OHI
�Q�

                                 (12) 
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equation (11) shows the pseudo random proportion selection rule. In this rule, a random number q∊[0.1] is generated 

and is compared to a parameter qo(q0∊[0,1]). Only if q≤q0, that the implementation spi
j
 with the largest value of Bi

j
 is 

chosen. Otherwise, a roulette wheel scheme is used. Also, the probability of mapping ni to npi
j
 is given by equation 

(12). In other words, the probability of selecting npi
j
 is directly proportional to the value Bi

j
 

(x)    Local Pheromone Updating 
 Immediately after an ant maps npi

j
 to ni, local pheromone updating procedure is implemented. The updating 

rule is given by equation (13) 

dΤ�� = �1 � γ� . dΤ�� + γ . dΤN,
if selection type is duration � greedy;     

cΤ�� = �1 �  γ� . cΤ�� + γ  .  cΤN,     
otherwise                                                                

       (13) 

Where T∊ [0,1] is a parameter value. The function of local pheromone update is to decrease the pheromone value 
corresponding to spi

j
 so that the following ants will have a higher probability to choose other implementation. Also, 

Local pheromone updating procedure enhances the diversity of the algorithm 
 
(xi)    Global pheromone updating 

Global pheromone updating takes place after all the ants have built their solutions. Global pheromone updating only 
applies to the components on the best-so-far solution (Tavares and Pereira, 2006). Assume that the best-so-far 
solution is {k1, k2,…..,kn}, which means that ni is being executed by spi

k1
 (1≤i≤n). the cost and searching space of the 

best-so-far solution is denoted as cost
bs

 and search space
bs

. Hence, the global pheromone updating rule is given by 
equation (14) 
 
Setting of parameters and characteristics of the algorithm 

The parameters of the algorithm are set apriory as follows: The weight of pheromone and the heuristic information in 

equation (14) are set to U=1 and β=0.45, the probability of setting the implementation with the largest value is qo=0.8. 
 

 P�,� = [XH,P]Z.[7H,P][
∑ \] H,P [XH,P]Z.[7H,P][         (14) 

 
Local pheromone updating rate is set at pL=0.1, Global pheromone updating rate PG = 0.1. In all the experiment, the 
total iteration number is set to 200 and the number of ants is set at the range of 100 - 500. We configured these 
parameters basically according to the Ant Colony System (ACS). The experimental result shows that these results still 
have good performance. 
 

Table.1. Performance Comparison of the best solution between the strategies, with 200 iterations 

Strategies Iteration Best Tour 
Length 

Mean Best 
Fitness 

Deviation Branching 

AS 200 198.00 159.10 7.46 5.25 
EAS 200 199.72 147.37 9.76 3.54 
RANK-BASE 200 189.40 146.17 8.83 2.77 
MIN-MAX 200 199.00 143.00 9.50 2.50 
DANTE 200 200.00 145.70 10.58 2.95 

 
We compared the approach we proposed with other algorithms to tackle the routing problems. First, the algorithm 
works by dividing the Direct Acyclic Graph (DAG) into partitions and distribute sub-deadline to each partitions. The 
decision process is applied to find the best solution. 
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Figure 3: Mean Comparison for five different strategies at 200 iterations. 
 

A clearer picture in fig. 4 of the closeness between the RANK-BASE strategy and the DANTE with respect to their 
Mean Best fitness and a slim variation from that of Min-Max is shwon. 
 

 
 
 
 

Figure 4: Best Tour Length and Mean Best Fitness compared. 
The result obtained in the network flow application as illustrated in figures 3 and 4, can be seen that the performance 
of the algorithm outperformed other algorithm proposed in the literature. The result obtained was able to meet the 
deadline constraints and was able to make good use of the time to minimize cost.  
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