
                           DOI: https://dx.doi.org/10.4314/gjpas.v25i2.8  
 

GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 25, 2019: 185-194 
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579 

www.globaljournalseries.com, Email: info@globaljournalseries.com 
NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS BY 
RATIONAL INTERPOLATION METHOD USING CHEBYSHEV 
POLYNOMIALS 
         
           J. OBOYI, S. E., EKORO AND P.T. BUKIE 

                 (Received 6 March 2019; Revision Accepted 6 May 2019) 

 

ABSTRACT 
 

In this research, a modified rational interpolation method for the numerical solution of initial value problem is 
presented. The proposed method is obtained by fitting the classical rational interpolation formula in Chebyshev 
polynomials leading to a new stability function and new scheme. Three numerical test problems are presented in 
other to test the efficiency of the proposed method. The numerical result for each test problem is compared with 
the exact solution. The approximate solutions are show competitiveness with the exact solutions of the ODEs 
throughout the solution interval. 
 
KEYWORDS AND PHRASES: Chebyshev polynomial, Rational Interpolation, Minimaxpolynomial, Initial Value 
Problems and Ordinary Differential Equations (ODEs). 
 
INTRODUCTION 
 
Many of the differential equations encountered in 
practice cannot be solved analytically and recourse 
must necessarily be made to numerical methods. 
Fortunately, there is a wide range of methods 
developed by researchers that can be efficiently 
implemented with the computer and has become 
widely applied in engineering, sciences and many 
fields. Recent research on efficient methods to solve 
differential equations is the motivation for this work. 
The need to develop direct methods for solving higher 
order ordinary differential equation cannot be over 
emphasized in the theory of initial value problems 
(Pandey, 2012). 
In recent years, researchers have applied non-
standard finite difference method and obtained 
competitive results to those obtained with other 
methods. Our aim is to improve the classical implicit 
difference methods for systems of first order initial 
value problems. Though implicit methods are in 
general more expensive, but they have advantage in 
terms of stability and convergence (Horner, 1977). 
 
 
 
 
 

The classical methods for solving first order ordinary 
differential equations include the Runge-Kutta 
methods and multistep methods (Lambert, 1974, Gear 
and Qsterby, 1984). One limitation of these methods 
is that they may be inefficient when they are used to 
solve problems with singularities. For this reason, it 
becomes imperative to find alternative methods that 
take into account the effect of singularities (Gear and 
Qsterby, 1984; Luke et al., 1975; Fatunla, 1990; 
Otunta and Ikhile, 2004. 
One popular method is the rational interpolation 
method which is based on the inverse polynomial 
functions and where points of singularities of the 
functions are made to coincide with that of the 
solution. The method is applicable to higher order 
equations since they can always be converted to an 
equivalent system of first order equations. Rational 
functions have the advantage of automatically picking 
up the singularities of a given function to the zeros of 
the denominator. The need to have an integrator that 
can efficiently cope with either singularity or stiffness 
or both is enough reason for the search for new 
integrator schemes or methods. 
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In this work, we will fit the classical integrator formulae 
proposed by Aashikelokhia (1991) in to Chebyshev 
polynomials to obtain a new scheme; this is possible 
since any polynomial of degree � is uniquely 
expressible as linear combination of the Chebyshev 
polynomials with the objective to guarantee a special 
specified accuracy (Conte, 1965). 

Some existing methods for integration schemes are 
the linear multi step methods (LMM), Exponential 
Based methods (EBM) and the Rational Interpolant 
based methods. 
Different methods for enhancing the performance of 
numerical integration formulae design for 
approximation of theoretical solutions of first order IVP 
in ODEs of the form

 

               (1) 
are in Fatunla (1976) given by; 

  

         

where A and the polynomial coefficients are real parameters, other methods suggested are in Okosun and 

Ademuluyi (2007), Aashikelokhia (1991,1997), Enright and Pryce (1978) Lambert and Shaw (1965).  
 
Most of these methods have low order of discontinuities when applied to IVPs. 
However, there is a need to have a method that can efficiently cope with different classes of IVPs. In other to 
achieve the set objective, we shall be concerned with addressing the problem of improving the accuracy of the 
rational interpolation method by modifying the existing method of Anetor et al., (2014), (Nwachukwu 2005), 
(Okosun and Ademuluyi 2007) and others by the introduction of Chebyshev polynomials. 
 
DERIVATION OF THE NEW SCHEME 
 
The derivation of the scheme is similar to Aashikelokhia (1991). 
We consider Aashikepelokhia (1991) class of rational integrator formulas given by;  ���� = ∑ 
�������������∑ ����������                    (2) 

where, �� = 
��������!����� �� �������!����     ;                " = 0�1�% − 1                (3) 

'� = �������������!����� �� �������!����  ;             " = 1�1�%                   (4) 

�( ) ∑ ��*�����+�*���������*���∑ �(���������*�����*���  +  ��'(; - =  1�1�%                (5) 

Setting k =5 in(2); we obtain ���� = ∑ 
�����.�����∑ ������/���    =

��
�����
0�0���
1�1���
.�.�����������0�0����1�1����.�.����/�/��              (6) 

where �2, �� , �� , �4,�5,'� , '�, '4, '5 and '6 are real undetermined coefficients. Let ���� be the numerical estimate to 

the theoretical solution (2) andset �� = ��7��with mesh points7�, 7��� and stepsizeℎ = �7��� − 7�� to be 

sufficiently small enough so that 7���  and 7� are very close. 
 
DETERMINATION OF THE COEFFICIENTS OF THE SCHEME   
We impose the following constraints, (i) and (ii) respectively on the interpolating rational function (6) in order to 
obtain the undetermined coefficients 
(i).The interpolating function must coincide with the theoretical solution at the 7� and 7���. 
(ii). Points of singularities or discontinuities of the inverse polynomial functions are made to coincide with that of 
the solution. 
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Consider equation (5) �() ∑ ��*�����+�*���������*���∑ �(���������*�����*��� + ��'( ; - = 1�1�%      

Put j = 0,  i = 1 in (5) implies , but '2 = 1  
Hence,                        (7) 

j = 0,  i = 1in (5) we have �+����! = 7���9−�2'� + ��:           (8) 

Similarly, for j = 2,3,4,5,6, . .10, A�B i= 1are obtained from the relation: �C+�C�D! =7���D E−�2'� − �C�F+�C�F�����C����D�G�!����C�F� − �C�F��+�C�F�������C�0��D�G���!����C�F��� − �C�F�0+�C�F�0�����C�1��D�G���!����C�F�0� − ⋯ − �C�F�I+�C�F�I�����C�I��D�G�J�!����C�F�I� +
��K             (9) 

where (9) is the general derivation formula, with
 

We obtain'� , '�, '4, '5 and '6 by combiningequations containing our undetermined coefficientsgenerated from our 
general derivation formula (9). �L+�L���M!���L + �N+�N��0O!���N + �P+�P��1Q!���P + �R+�R��.S!���R + �/+�/��/6!���/ = − ���+�����2!�����        (10) 

�N+�N���O!���N + �P+�P��0Q!���P + �R+�R��1S!���R + �/+�/��.6!���/ + �.+�.��/5!���. = − �L+�L�M!���L        (11) 

�P+�P���Q!���P + �R+�R��0S!���R + �/+�/��16!���/ + �.+�.��.5!���. + �1+�1��/4!���1 = − �N+�N�O!���N        (12) 

�R+�R���S!���R + �/+�/��06!���/ + �.+�.��15!���. + �1+�1��.4!���1 + �0+�0��/�!���0 = − �P+�P�Q!���P        (13) 

�/+�/���6!���/ + �.+�.��05!���. + �1+�1��14!���1 + �0+�0��.�!���0 + �+����/�!��� = − �R+�R�S!���R        (14) 

 

Equations (10) - (14) written in the form as: 

  (15) 
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Re-writing (15) as an upper triangular matrix, first the test equation  and the stability functionℎT =Uℎ 

wasappliedand dividing each row by ��. 
 

  
 
 
 
 (16) 
 

 
Back substitution by solving (16) yields, 

                    (17) 

Similarly, the undetermined coefficients�2, ��, ��, �4 and �5 can be generated by rearranging the equations 
obtained from (9) as follows; �2 = ��             (18) 

�� = �!��� + ��'�           (19) 

�� = �!���0 + �!��� '� + ��'�          (20)  

�4 = 4!���1 + �!���0 '� + �!��� '� + ��'4        (21) 

�5 = �.+�.�4!���. + 4!���1 '� + �!���0 '� �!��� '4 + ��'5       (22) 
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Applying the test equation =  U� and ℎT =Uℎ to the equations (18)-(22) and substituting (16)  

we have; 
 
 
         
 

 
 
                (23) 
 
 
 
Recall,�� = �2 = 1 from (7) 

Applying the results (17) and (23) to the integrator (6), and the fact that=  U�, we obtain the stability function given by; ���� = VWℎTX =  4S�OO22��O�5522� �524�22� 0�62522� 1�4S22� .4S�OO22��O�5522� �524�22� 0�62522� 1�4S22� .���2� /          (24) 

 
 
 

 
2.2 Application of the Chebyshev Polynomials 
to the Method 
 
In order to find a rational interpolation function, which 
spread the error evenly over the whole interval of 
interest with the same accuracy, we approximate the 
numerator and the denominator of (6) by Minimax 
polynomials, this is with the aim of modifying the 
method(6) and stability function (24) by introducing 
the Chebyshev Polynomial in the numerator and 

denominator of (6), of course any polynomial of 

degree n is uniquely expressible as a linear 
combination of the Chebyshev Polynomial, i.e. 
constants c[ exist such that P]�x� = c2T2�x� + c�T��x� + c�T��x� + ⋯ + c]T]�x� 
(Conte, 1965). 

For application purpose, we express each 7� in (6) in 
terms of the Chebyshev polynomials as expressed in 
Column II below 

 
Table 1:Chebyshev polynomial for various Tn 
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Column I 

 
Column II 

2̀�7� = 1 
 �̀�7� = 7 
 �̀�7� = 27� − 1 
 4̀�7� = 474 − 37 
 5̀�7� = 875 − 87� + 1 
 6̀�7� = 1676 − 2074 + 57 
 S̀�7� = 327S − 4875 + 187� − 1 
. 
. 
. 
 �̀�7� = 2���7� … 

1 = 2̀ 
 7 = �̀ 
 7� = 2��� 2̀ + �̀� 
 74 = 2���3 �̀ + 4̀� 
 75 = 2�4�3 2̀ + 4 �̀ + 5̀� 
 76 = 2�5�10 �̀ + 5 4̀ + 6̀� 
 7S = 2�6�10 2̀ + 15 �̀ + 6 5̀ + S̀� 
. 
. 
. 7� = 2�����… � 

 
MINIMAX POLYNOMIAL APPROXIMATION 

If c��7� is any polynomial of degree � with leading coefficients A�, then its Minimax polynomial approximation of 
degree ≤ � − 1 on 9−1, 1: is e����7� = c��7� − A�2��� �̀�7�.       (Samelson, 1972). 
   

In (6), set c��7� as  c��7� = A2 +  A�7 + A�7� + ⋯ + A�7�         (25) 

Column II in Table I expresses 7��% = 0,1, … � − 1� in terms of Chebyshev polynomials so that c��7� = f2 2̀ + f� �̀�7� + f� �̀�7� + … + f� �̀�7�          (26) 

Since the term 7� appears only in �̀�7�, we must have f� = A�2��� and therefore from (26)e����7� = f2 2̀ +f� �̀ + f� �̀ + … + f��� �̀��              
(27)  

 If we retain only the terms through % < � in (26) and if we use the fact that | �̀�7�| ≤ 1 for all n, we observed that 
the error committed is bounded by; max��k�k�|c��7� − �f2 2̀ + f� �̀ + f� �̀ + … + f� �̀�| ≤ |f���| + |f���| + ⋯          (28) 
Hence, to obtain the Minimax polynomial approximation to the polynomial (6), we just express c��7� as the series 
(27) of Chebyshev polynomials and then drop the last term in (26). 
We summarize the procedure for obtaining an economized rational approximation to (6) 
 ���� = 
��
�����
0�0���
1�1���
.�.�����������0�0����1�1����.�.����/�/��  

    
Consider, 
 ��7�= 

4S�OO22��O�5522��524�22�0�62522�1�4S22�.4S�OO22��O�5522��524�22�0�62522�1�4S22�.���2�/ = 
l.���m/���              (29) 

 
We then find the Minimax polynomials for c5�7�and n6�7�. Which shall be denoted by o4and o5respectively; then 
 ���� = o4WℎTXo5WℎTX 
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Next, we substitute the value 7� as given in column II of Table 1 in (29) 
 ��7� =  3628800 2̀ + 1814400 �̀ + 40320092��� 2̀ + �̀�: + 5040092���3 �̀ + 4̀�: + 360092�4�3 2̀ + 4 �̀ + 5̀�:3628800 2̀ + 1814400 �̀ + 40320092��� 2̀ + �̀�: + 5040092���3 �̀ + 4̀�: + 360092�4�3 2̀ + 4 �̀ + 5̀�: − 12092�5�10 �̀ + 5 4̀ + 6̀�: 

 
 ��7� = 4O4�Q62p���O6��22p���24522p0���S22p1�562p.4O4�Q62p���O6��Q6p���2�S22p0���S4Q.6p1�562p.�Q.6p/               (30) 

 
 
Next, we substitute the values of  �̀�7�  as given in Column I of Table 1 into (30) and simplify to get a new 
numerical integrator.  

 ��7� = 4S�O462��O�5522��52SO22�0�62522�14S�OO22��O�54S�.6��524�22�0�626622�1�4S22�.           (31) 

Therefore, 
 ���� = 4S�O462��O�5522����52SO22�0���62522�1��4S�2OO22��O�54S�.6����524�22�0���626622�1���4S22�.��      (32) 

 
Hence, (32) is the new scheme for solution of the first order differential equations.  
 
NUMERICAL IMPLEMENTATION OF THE SCHEME IN (32)     
This section considers the numerical implementation of the scheme on three initial value problems using C++ 
programming language and run on a digital computer. Three test problems considered are found in Mathews 
2005, Otunta and Nwachuckwu (2005) and Ayinde and Ibijola (2015) 

Problem 1: Consider the linear system.q = −47�
= 27�

r,  
with the initial conditionX�0� =W��X and exact solution X = �t�.ut0u � in the interval   0 ≤ t ≤ 1, where w = �7�7��. 
Mathews 2005. The application of the numerical integrator (32) with uniform mesh size h = 0.1 onproblem 1 yields 
the results below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
x′

2
x′
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Table 2: Numerical Result for Problem 1 

 

nt  h y Exact Solution Proposed Scheme (32) Error 

 
 
0.1 

 
 
0.1 

 7� 
 
0.670320046 0.670328981 

 
8.93E-06 7�  

1.221402758 
 
1.221305387 

 
9.74E-05 

 
0.2 

 
0.1 

7� 0.449328964 0.449406382 7.74E-05 7� 1.491824698 1.491832363 7.66E-06 

 
0.3 

 
0.1 

7� 
0.301194212 0.300822854 0.000371358 7� 
1.8221188 1.822257552 0.000138752 

 
0.4 

 
0.1 

7� 0.201896518 0.200173972 0.001722546 7� 2.225540928 2.225688904 0.000147976 

 
0.5 

 
0.1 

7� 0.135335283 0.131108807 0.004226476 7� 2.718281828 2.718009847 0.000271981 

 
0.6 

 
0.1 

7� 0.090717953 0.082725008 0.007992946 7� 3.320116923 3.318421596 -0.001695327 

 
0.7 

 
0.1 

7� 0.060810063 0.047796279 0.013013784 7� 4.055199967 4.05005194 0.005148027 

 
0.8 

 
0.1 

7� 0.040762204 0.021567312 0.019194892 7� 4.953032424 4.940602539 0.012429885 

 
0.9 

 
0.1 

7� 0.027323722 0.000936046 0.026387677 7� 6.049647464 6.022969098 0.026678366 

 
1.0 

 
0.1 

7� 0.018315639 0.016099655 0.002215984 7� 7.389056099 7.335702861 0.053353238 

 
Problem 2:Using the scheme (32)to solve the initial value problem �́ = −�, y�0� = 1 in the interval 0 ≤ t ≤ 1, With uniform mesh size h = 0.1The exact solution is given as y�t� = e�}. 
(Otunta and Nwachuckwu2005) 

Table 3: Numerical Solution for problem 2 
 

nt  h 
Exact 
Solution  

 
Proposed 
Scheme Error 

0.1 0.1 0.904837418  0.90472964 
 
 

 
0.000107778 

   
0.2 0.1 0.818730753  0.818654277 7.65E-05 

0.3 0.1 0.740818221  0.74078276 3.55E-05 

0.4 0.1 0.670320046  0.670328981 8.93E-06 

0.5 0.1 0.60653066  0.606580414 4.98E-05 

0.6 0.1 0.548811636  0.548891337 7.97E-05 

0.7 0.1 0.496585304  0.496676671 9.14E-05 

   
0.8 0.1 0.449328964  0.449406382 7.74E-05 

0.9 0.1 0.40656966  0.406600396 3.07E-05 

1 0.1 0.367879441  0.367823981 5.55E-05 
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Problem 3: Using the scheme (32) to solve the initial value problem 7�0� = 1in the interval 0 ≤ t ≤ 1 with 

uniform mesh size h = 0.1.Exact solution is given as: x�t� = e}0
.      (Ayinde and Ibijola, 2015) 

 
Table 4: Numerical Result for Problem 3 

 ~� � Exact Solution Proposed 
Scheme (32) 

Error 

0.1 0.1 1.105170918 1.105049707 0.000121211 

0.2 0.1 1.221402758 1.221305387 9.74E-05 

0.3 0.1 1.349858808 1.349805733 5.31E-05 

0.4 0.1 1.491824698 1.491832363 7.66E-06 

0.5 0.1 1.648721271 1.648797635 7.64E-05 

0.6 0.1 1.8221188 1.822257552 0.000138752 

0.7 0.1 2.013752707 2.013925791 0.000173083 

0.8 0.1 2.225540928 2.225688904 0.000147976 

0.9 0.1 2.459603111 2.459622711 1.96E-05 

1 0.1 2.718281828 2.718009847 0.000271981 

 
DISCUSSION OF NUMERICAL RESULTS 
Problem 1 is a linear system with exact exponential 
solutions. The results obtained from the application of 
the proposed method and the exact solutions of the 
differential equation are sufficiently comparable for the 
fixed step-size h as shown in Table 2.Problem 2 is an 
autonomous first order ordinary differential equation. 
The proposed method shows competitive results with 
small error for each mesh size as can be seen in 
Table 3. In problem 3, the trend is the same and the 
results are comparable. 
 
SUMMARY AND CONCLUSION 
In this work, we proposed a numerical method by 
using the Minimax polynomials as a rational integrator 
in which the numerator is a polynomial of degree 4 
and the denominator a polynomial of degree 5.  This 
was possible since any polynomial of degreen can be 
approximated by a polynomial of degree ≤ n − 1 for 

which the absolute value of|Pn�x� − Mn�1�x�| on 9−1, 1: is as small as possible. 
The proposed method can be used for higher order 
equations, since they can always be converted to an 
equivalent system of first order. The approximate 
solutions compare favourably with the exact solution 
of the ODEs. This shows that the integrator formula is 
consistent and stable. The implementation of the 
modified rational interpolation was carried out on C++ 
programming language and runon a digital computer. 
 
REFERENCES 
 
Aashikpelokia, U.S.U. 1991. A Class of NonLinear 
 One- Step Rational Integrators, Ph.D 
 thesis,  University of Benin, Department of 

Mathematics,  University of Benin, Benin City, 
 Nigeria.257-263. 
 
Aashikpelokhai U.S.U 1997, A Class of non-linear 
 one-step rational integrator, Agbor, Delta 
 State. PonPublibshers Limited. 1, 15. 
 
Aashikpelokhia, U.S.U. 2000. A Variable Order 
 Numerical Integration base on Rational 
 Interpolants. Journal of the Nigeria 
 Mathematical Society, 19: 27-38 
 
Aashikpelokhia, U.S.U. and Momodu, I.B.A.  (2008).A 
 Class of Fixed Denominator Rational 
 Integrators. International Journal of Physical 
 Science, 3(10): 257-263. 
 
Anetor, O. Ebhohimen, F. and Esekhaigbe, E. 2014. 
 Rational Interpolation Method for Solving 
 Initial Value Problems. Journal of the Nigeria 
 Mathematical Society, 34 (2): 83-93. 
 
Ayinde S. O. and Ibijola E. A. 2015, “A New Numerical 
 Method for Solving First Order Differential 
 Equations.” American Journal of Applied 
 Mathematics and Statistics, 3(4): 156-160. 
 doi: 10.12691/ajams-3-4-4. 
 
Conte, S. D. 1965. Elementary Numerical Analysis. 
 New  York: McGraw-Hill Book Company, 3: 
 31-284. 
 
Enright W.H and Pryce J. D., 1978 “Two Fortran 
 Package for assessing IVPs” ACM 
 Transaction  on mathematical software 
 BIT13: 1-27  

,2txx =′
NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS BY RATIONAL INTERPOLATION METHOD                           193 



 
Fatunla, S. O. 1990. On Numerical solution of singular 
 IVPs. Abacus, 19(2):121-130. 
 
Fatunla, S. O. 1976. A New Algorithm for Numerical 
 Solution of Ordinary Differential Equations. 
 Journal of Computer and Mathematics with 
 Application,2: 247-253. 
 
Gear, C.W. and Qsterby, O. 1984.Numerical Initial 
 Value  Problem in Ordinary Differential 
 Equations. Englewood Cliff, NJ: Prentice 
 Hall.(a), 3: 8-21. 
 
Gear, C.W. and Qsterby, O. 1984. Solving Ordinary 
 Differential Equations With Discontunities, 
 ACMTULVIS, Journal of Mathematics. (b), 
 10(5): 23-44. 
 
Hairer, E. and Wanner, G. 1996. Solving Differential 
 Equation II. Stiff and Algebraic Problem, 
 Berlin:  Springer, 2: 10-12. 
 
Henrici, P. 1982. Essential of Numerical Analysis. 
 New York: John Wiley, 6: 409. 
 
Heun, K. 1990. Nene Methodenzur Approximativen 
 Integration der 
 DifferentialgeichungeneinerUnbliangingVeian
 deiliachent.Mathematics and Physics.45: 23-
 38. 
 
Horner, T. S. 1977. Chebyshev Polynomials in the 
 Solution of Ordinary and Partial Differential 
 Equations, Doctor of Philosophy thesis, 
 Department of Mathematics, University of 
 Wollongong, http://ro.uow.edu.au/theses/1543 

. 
Lambert, J.D. and Shaw, B. 1965. On the Numerical 
 of y� = f�x, y� by class of formulae base on 
 rational  approximation. Mathematics and 
 Computer Journal 19: 456-462 
 
Lambert, J.D.1974. NonLinear Methods for Stiff 
 System of Ordinary Differential Equations. 
 Conference on the Numerical Solution of 
 Ordinary Differential Equations(a), Dundee, 
 3(10): 75-88 

 
Lambert, J.D. 1974. Computational Methods in 
 Ordinary  Differential Equations. New 
 York, John Wiley  and Sons (b),1: 238.   
 
Luke, A.  Fair, W .and Wimp, J. 1975. Predator 
 Corrector Formulae Base on Rational 
 Interpolants. Journal of Computer and 
 Mathematics with Application, 1: 3-12. 
 
Mathews, J.H. 2005. Numerical Methods for 
 Mathematics, Science and Engineering, 
 California State: Fullerton and Pearson, 2, 15-
 30  
 
Okosun, K. O. and Ademuluyi, R. A. 2007. A Three 
 Step  Rational Method for Integration of 
 Differential  Equations with Singularities. 
 Research Journal  of Applied Siences, 
 2(1): 84-88 
 
Otunta, F. O and Nwachuckwu, G.C 2005. An R [2;4; 
 2:6] Rational One-Step Integrator for Initial 
 Value Problem in ODEs, Nigeria Association 
 of Mathematics Physics, 9:285-294. 
 
Otunta, F.O. and Ikhile M.N.O. 2004. Nonlinear one 
 Step Rational Integrator Method for Initial 
 Value Problem in Ordinary Differential 
 Equations. Journal of Mathematical 
 Association of Nigeria, 4(3):150-161. 
 
Pandey, P.K. 2012. An Implicit Rational Method for 
 Solution of Second Order Initial Values in 
 Ordinary Differential Equations. International 
 Journal of Computer Applications,97(1): 58-
 887. 
 
Runge, C. 1895. Uiber die Numerische  Auflosung 
 Von Differential gleichungen, Mathematical 
 Analysis,46: 167-178. 
 
Samelson, H. 1972. History of topology.Uk, Bull. 
 London Mathematic Society, 10: 202-217. 
 
Shampine, L.F. and Watts, H.A. 1971 Comparing 
 Error Estimators for Runge-Kutta Methods. 
 Mathematics of Computation, 25 (2): 445-455. 

 
 

 
 

          194                      J. OBOYI, S. E., EKORO AND P.T. BUKIE 


