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ABSTRACT
In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with
variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the
time-fractional differential equations.

KEYWORDS: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform
method, hyperbolic-like equation, Laplace transform, parabolic-like equation.

MSC 2010: 35L15, 74G10, 34A08, 35K15.

INTRODUCTION
The Parabolic-like and Hyperbolic-like equations can be and Hyperbolic-like equations. Several authors have
used to describe wide variety of phenomena such as solved these linear and nonlinear equations using
sound, heat, diffusion, electrostatics, electrodynamics, several methods, for example (ADM), (HPM), (VIM),
fluid dynamics, elasticity, or quantum mechanics. These (HAM) ([21, [3], [61,[7], [8], [9], [101, [11], and [17]).
seemingly distinct physical phenomena can be In this article, we are concerned with the following
formalized similarly in terms of Parabolic-like equations problems:

ut+f1(x , Y ,z)uxx +f2(x ,V ,z)uyy +f3(x ,V ,z)uZZ =0, t>0 (1)

u(x ,V ,z,O)=f4(x ,V .z ), t=0,
and

Uy +81(X 102 Yy +85(x .y 2 )uyy +g3(x .,y .2 Ju,, =0, t >0 (2)

u(x ,V oz ,O)=g4(x V2 ), u, (x V2 ,0):g5(x ,V oz ), t=0.

For solving these equations, we used the homotopy perturbation transform method (HPTM).
These problems have been studied by some researchers by using (ADM) and (HPM) see for example [12]and [18].
We extend our study to the fractional order for solving the problems:

Dou(x .,y .z 0 )+f1(x,y.2 Juy +f5(x,p .z )uyy +f3(x,y .2 Ju,. =0, t>0 (3)
0<a<l, u(x ,V .z ,O)=f4(x ,V ,Z ), t=0,

and

Dou(x,y.z.t)+g(x,y,z g +g,(x,y .z )uyy +g5(x .,y .,z . =0, t>0 (4)
1<a<2, u(x,y.,z,0)=g4(x.y.z), u,(x,y,z2,0)=g5(x.,y.,z), t=0.

When we take a =1 (a = 2) in the equation (3) ((4)), we obtain the exact solution of equation (1) ((2)) successively.
Our aim is to solve these problems by using (HPTM) (see [13]).
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Basic definitions:
Definition 2.1. [16] Let (Z ) be a function of t specified fort > 0 . Then the Laplace transform of (t ) , denoted by

L{f (¢)}.and s defined by

L{f (1)) :F(S):I:e_" (¢)dt, 5)

where we assume at present that the parameter § is strictly positive real number.

Theorem 2.2. [16] If ¢,and c, are any constants while f; (t) and f, (t)are functions with Laplace transforms £, (s)

and F, (S) respectively, then

L {cfl (1)+cof, (¢ )} =clL{ ( )}+02L { ) (¢ )} =c,F (s)+c,F (s). (6).

Theorem 2.3. [15] If

()= ar" (7
n=0

Converge for ¢t > 0, with

Ka"

< , (®)
n!

for all n sufficiently large and > 0,K > 0 , then

L{f(t)}=§anL {w}:i”j;’j} (Re(s) - ). ©)

n=0

an

Theorem 2.4. [15] Suppose that f(t),f’(t),...,f("_l) (t) are continuous on [0,00) and of exponential order, while
f” (t) is piecewise continuous on [0,00) . Then

L () =s"L{f (£)}=s"F (07)=s"7f"(07)—...=f " (0%). (10).
Definition 2.5. [19] A real function f’ (t),t >0, is said to be in the spaceC ,, u €l] if there exists a real number
p = i, such that f (1)=t"f (1), Wherefl(t)eC([O,oo)), and it is said to be in the spaceC, , m ell if
f"ec,.

Definition 2.6. [19] The fractional derivative of f € C”| in the Caputo’s sense is defined as:

1 t —a-
—— (=" " (2)dz, i me1<a<m
Def()={ T

j;f(r), iF a=m,

where mell *.

Definition 2.7. [19] The Laplace transform, L{D,f‘f(t) ; s} of the Caputo’s fractional derivative is defined as:

L{D:f(t): s} =5F (s) —mz_ls“*"*lf“) (0), (11)

wherem—1<a<m, mel".

Analysis of Homotopy perturbation transform method (HPTM):

To illustrate the basic idea of (HPTM) [13], we consider a general nonlinear partial differential equation with the initial
Du(x,t)+ Ru(x,t) +Nu(x,l)=g(x,t) (12)

conditions of the form { u(x,O)z h(x), u, (x,O): f(x),
where D in the second order linear differential operator D=82/8t2, R is the linear differential operator of less order

than D, N represents the general nonlinear differential operator and g(x,t) is the source term. Taking the Laplace
transform on both sides of Eq. (12):

L {Du (x,t)} + L{Ru (x,t)} + L {Nu (x,t)} =L {g(x,t)}. (13)
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Using the differentiation property of the Laplace transform, we have

L{u (x,t)} =M+L;)—L2L{Ru(x,t)} —S%L{Nu(x,t)} +S%L{g(x,t)}. (14)

S S S
Operating with the Laplace inverse on both sides of Eq. (14) gives

1

w(x.)=G (x ,t)-L" {S—zL (Ru (x )+ Nu (x ,t)}}, (s)

where G(x,t) represents the term arising from the source term and the prescribed initial conditions. Now, we apply
the homotopy perturbation method

~+00

u(x,t)zZp”un(x,t), (16)
n=0

and the nonlinear term can be decomposed as

Nu(x,t)zip”Hn (u), (17)

n=0

for some He’s polynomials H, (u) see ([4]-[5]) that are given by

Hn(uo,...,un 1 0 { (Zpuﬂ ,n=0,1,2,3,... (18)
p=0

n'@p =
Substituting Egs.(16) and (17) in Eq. (15) we get

z pu, (x,6)=G (x.1) ~ p[Ll {S%L{Rf P (x,t)+2 P'H, (u)}}} (19)

n=0

which is the coupling of the Laplace transform and the homotopy perturbation method He’s polynomials. Comparing
the coefficient of like powers of p, the following approximations are obtained

p0 DU, (x,t)zG(x,t),

()= [ (), ).
Py (wt)=— L {S%L{Rul(x,t)JrHl(u)}},
P (rr) =1 {%L{Ruz(x,t)mz (u)}},

N

Then the solution is
u(x,t): lirr112piui (x,t) =u, (x,t) +u, (x,t) +u, (x,t)+ . (20)
P=is0

Parabolic-like equation:
Consider the parabolic-like equation in three dimensions of the form:

u, +f1(x Y »Z )uxx +f2(x V2 )uyy +f3(x ,V ,Z )uZZ =0, ¢>0 (2 1)
u(x,y,z,0)=f4(x.y.z), t=0.
Taking the Laplace transform on both sides of Eq. (21), we get:
L {.f 7y Z uxx +f2( 7y 7Z )uyy +f3 (x’y ’Z )uzz } (22)

An appllcatlon of Eq. (10), ylelds

L{ ( ,y,z,t)}zs f4( ,yz lL{f ,yz u +f2( x,), z)u +f3( x,V, Z) } (23)

Applying the inverse Laplace transform on both sides in Eq. (23), we get:

u(x,y,Z,l/‘)zﬁl()c,y,z)—L'1 {s"lL{ l(x,y,z)uxx +f2(x,y,z)uyy +f3(x,y,z)uzz }} (24)

Applying the classical perturbation technique, we can assume that the solution can be expressed as a
power series in p, as given below:

u(x,y,z,t)zi p'u, (x,y,z,t), (25)
n=0
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where the homotopy parameter p , is considered as a small parameter p E[O, 1] .
Substituting Eq. (25) in Eq. (24), we get:

> pu,=fi-pL” {s‘L{ffp"(un>xx+f2+2'°p"<un)w+fsiop"w,,)zz}}, 26)

this is a coupling of the Laplace transform and homotopy perturbation methods using He’s polynomials. Now, equating
the coefficient of corresponding power of p on both sides, the following approximations are obtained as:

p’ u, (x,y,z,t)=f4 (x,y,z),
pliu (x,p,z,6)=—L" {SflL {fl (uo), + 12 (o), + 1 (o)., }},

n . - -1
p ‘un (xﬁyﬂzat)z_L ! {S L {ﬁ (un—l )xx +f2 (un—l )yy +‘f‘3 (un—l)zz }}a
wherenell *.
Proceeding in this same manner, the rest of the componentsi, (x,y,z,t), can be completely obtained, and the

series solution is thus entirely determined. Finally, we approximate the analytical solutionu(x,y, Z,t) , by truncated
series:

N
u(x,y,z,t)z}/ig}oZun (x,y,z,t). (27)
n=0

Hyperbolic-like equation:

Consider the three dimensional hyperbolic-like equation of the form:
u, +g1(x ,V o2 )uxx +g2(x ,V .z )uyy +g3(x ,V ,Z )uZZ =0, >0 (28)
u(x ,V ,Z ,O):g4(x ,V ,Z ), u, (x ,V ,Z ,O):gS(x ,V ,Z ), t=0.

Taking the Laplace transform on both sides of Eq. (28), we get:

Liu,}=-L {gl (x,y,2)u, +g, (x,y,2)u, +g5(x,y,2)u } (29)

An application of Eq. (10), yields:

L{u}=s"g, +s7g—sL {gl (x,y.2)u,+g, (x,y,z)uyy +g(x,,2)u,, } (30)

Applying the inverse Laplace transform on both sides in Eq. (30), we get:

u(x,y,z,t)=g,+tgs—L" {s‘zL{glum + gyl + QiU }} : (31)

Now applying the classical perturbation technique, we can assume that the solution can be expressedas a power
series in p , as given below:

u(x,y,z,t)zZp”un (x,y,z,t), (32)
n=0
where the homotopy parameter p , is considered as a small parameter p E[O, 1].
Substituting Eq. (32) in Eq. (31), we get:
> p'u,=g, +igs— pL {S'ZL {glz Pl +g, . p (), +g >, p"(u,). }} (33)
n=0 n=0 n=0 n=0

this is a coupling of the Laplace transform and homotopy perturbation methods using He’s polynomials. Now, equating
the coefficient of corresponding power of p on both sides, the following approximations are obtained as:

p0 ‘u, (x,y,z,t)=g4 +1g5,

pl U, (x,y,Z,t):— L {S*ZL {gl (uo )xx +g, (uo )yy +g, (u0 )ZZ }},

p"iu, (x,y,Z,t):— L' {S_zL {gl (un—l )xx +g, (”;H )yy +&; (un—l )ZZ }},

wherenell ",
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Proceeding in this same manner, the rest of the components u, (x,y,z,t) , can be completely obtained, and the

series solution is thus entirely determined. Finally, we approximate the analytical solutionu(x,y,z,t) , by truncated
series:

N
u(x,y,z,t)z}/i_lgz% (x,y,z,t). (34)
n=0

Numerical examples:
Example 6.1. : Consider the following one-dimensional parabolic-like equation with variable coefficients:

1 1
u, (x ,t)—(2x2—4)u” =0, >0

u(x,0)=2x2—1, t =0.

(35)

Taking the Laplace transform on both sides of Eq. (35), we get:

L{u, (x,t)}=L{Gx2 —%ju} (36)

An application of Eq. (10), yields:

L{u(x,t)}=s"(2x=1)+s7'L {Gx ’ _ij”” } (37)

Applying the inverse Laplace transform on both sides in Eq. (37), we get:

u(x,t)z(sz—l)—i-L_l sT'L {(%xz—%juw} . (38)

By applying the aforesaid homotopy perturbation method, we have:

2pnun = 2x ? _1+pL_l S_IL {(%X ’ _%ji{;pn (u” )xx (X ’I)} ) (39)

Equating the coefficient of the like power of p on both sides in Eq. (39), we get:
plruy(x,t)=2x" -1,

.pl cu, (x,t)= L {le {(;—x _ i—] (). }}

pn:un(x,t):L_l{s_lL{(;—xz—i—j(un_l)m}}, (40)

where nell *.
Using the iteration formula (40), we obtain

u, (x,t):2x2 -1,

u, (x,t)= (2x2 —l)t,
u, (x,t):(sz -1 ;—2!,

u, (x,t)=(2x2 —l);—n!.

Finally, we approximate the analytical solution u (x,l) , by truncated series:
N

u(x,t):]lviir(}o Oun(x,t):(zxz_l)et, (41)
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Example 6.2. : Consider the following two-dimensional parabolic-like equation with variable
coefficients:

21 x2+1

u (x,y ,t)+y Sl Ty =0, ¢>0 (42)
u(x .V ,0)=y2—1, t=0.
Taking the Laplace transform on both sides of Eq. (42), we get:
2 2
x 41 y -1
Liu,(x,y,t);=1L u - u__ . 43
An application of Eq. (10), yields:
2 2
- _ x 41 y =1
L{u(x,y,t)}:s 1(yz—l)+s IL{ S T uxx}. (44)
Applying the inverse Laplace transform on both sides in Eq. (44), we get:
2 2
I x°+1 y -1
u(x,y,t):y2_1+L1{S IL{ 5 U, - 5 uxx}}' (45)

By applying the aforesaid homotopy perturbation method, we have:

V13,

2 (w )H (46)
Equating the coefficient of the like power of p on both sides in Eq. (46), we get
pliug (x,p,t)=y" —1,

L 241 2 -1
pljul(x,y,t):Ll{S IL{XZ (uo)yy_yz (uo)xx}}’

+00

+00 ~ B 2 1 .,
anl/l”:yz—l-l-le{S lL{x 2+ Zp (un)YY_

n=0 n=0

_ _ > +1 -1
p” :un (X,y,t):L I{S IL{X 2+ (u”*I)yy_ y 2 (unl)xx}}’ (47)

wherenell ”.
Using the iteration formula (47), we obtain

u, (x,y,t)zy2 -1,
u, (x,y,t)z(x2 + l)t,

t2

u, (x,y.6)==(»’ —1);,
3

u, (x,y,t)z—(x2 + 1)%,

. t2n

uZn (x’y’t):(_l) (yz_l)(zn)',
. ) t2n+1
Uy (x’y’t):(_l) (X +1)(2n+1)'

Finally, we approximate the analytical solution u (x,y,t) , by truncated series:

u (x’y’l)z}viil}oi”n (x,y,t) = (xz +1)sint+ (y2 —1)cos t. (48)
n=0
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Example 6.3. : Consider the following three-dimensional parabolic-like equation with variable coefficients:
2 2

2
u, (x,y .,z .t ):%uxx +2 t>0

z
—u U,
24 7 24 %

u(x V .Z ,O)=2x3y3z3, t=0.

(49)

Taking the Laplace transform on both sides of Eq. (49), we get:

2 y2 ZZ
L =Li— — —u_ . 50
{ut(x,y,z,t)} {lzu +24uyy+24u } (50)

An application of Eq. (10), yields:

2 2 2
L{u(x,y,z,t)} (2x3 } 3)+S 1L{Eum+§4uw ;4 zz} (S1)

Applying the inverse Laplace transform on both sides in Eq. (51), we get:
2 yz e
3,33 -1
u(x,y,z,t)=2xyz2 + L' L u + 2y 2y . (52)
(x.3,21)= 12 e gt Tt
By applying the aforesaid homotopy perturbation method, we have:
2 +00 2 +00 2 40
3,353 -1
Zpu =2xy'2 + pL' {s57'L Zp Zp Zp .(53)
n=0 n=0
Equating the coefficient of the like power of p on both sides in Eq. (53), weget :

u, (x,y,z,t)=2x3y3z3,

)= L), S ), s ).

2 2 2
p" :un ('x"y’Z’t):lJ_1 {S_IL {lx_z(u”_l)xx+ ;_4 un—l)yy + 5_4 u”_l)zz}}’ (54)

wherenell *.
Using the iteration formula (54), we obtain

u, (x,y,z,t): 2x3y3z3,
u, (x,y,z,t)=2x3y3z3t,
t2

uy (x,y,2,0)=2x"yz° o7

n

u, ()c,y,z,t):2x3y3z3 %

Finally, we approximate the analytical solution u (x,y,z,t) , by truncated series:

N
u(x,y,z,t)zjlviEOZun (x,y,z,t)=2x3y3236t. (55)
n=0

Example 6.4. : Consider the following one-dimensional hyperbolic-like equation with variable
coefficients:

x2-1

u, (x,t) = 5 U,

u(x,O):xz—l, u,(x,O)zO t =0.

, t>0

(56)
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Taking the Laplace transform on both sides of Eq. (56), we get:

L{un(x,t)}=ll{x22_lum}- (57)

An application of (10) yields:

L{u(x,t)}zs_l(xz—1)+s_2L{xz_lu“}. (58)

2

Applying the inverse Laplace transform on both sides of Eq. (58), we get:

u(x,l‘)=x2—1+Ll{sZL{xzz_luxx}}- (59)

By applying the aforesaid homotopy perturbation method, we have:

iop”un =x’—1+pL™" {S_ZL{ Zp u,) )}} (60)

n=0
Equating the coefficient of the like power of p on both sides in Eqg. (60), we get:

p’ :uo(x,t):x2 -1,

2

p'iu, (x,t): L' {S_ZL{X

p”:un(x,t)zL_l{s_zL{x ul)}} (61)
wherenell "

Using the iteration formula (61), we obtain
u,(x,t)=x 2—1,

2

u, (x ,1)= (x -1)—

. (x t) (x —1)(2:)'

Finally, we approximate the analytical solution u(x,t) , by truncated series:

(x, t)_}zlg}oz L (1) (x2 —l)cosh L. (62)

Example 6.5. : Consider the following two-dimensional hyperbolic-like equation with variable
coefficients:

1 > 1 >
Uy (X3 )==x U +—y “u,,, t>0
6 6 s s (63)
u(x,y,0)=0, u; (x,y,0)=x"+y", t=0.
Taking the Laplace transform on both sides of Eq. (63), we get:

1 1
L {u”(x,y,t)} =L {gxzuxx+gy2uyy} : (64)

An application of Eq. (10), yields:

L {u(x,y,t)} = si2 (x3+y3) + SizL {%x u, +éy } (65)
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Applying the inverse Laplace transform on both sides in Eq. (65), we get:

u (x,y,t) = (x3+y3)t + L_l {s‘2L{%x2uxx+%y2uyy}}- (66)

By applying the aforesaid homotopy perturbation method, we have:

+00 1 +00

> p'u,=(x+) )i+ pL {S‘ZL{gxzzp” (4,), ++ - WA }} (67)
n=0 n=0 n=0

Equating the coefficient of the like power of p on both sides in Eq. (67), we get:

U, (x,y,t):(x3+y3)t,
_ _ 1 1
ul(xﬂy’t):l’ 1{S ZL{gxz(uo)xx+gy2(uo))’y}},

p":un(x,y,t)zL_l{ -21:{ ¥ (), e (. )}} (68)

wherenell *.
Using the iteration formula (68), we obtain

u, (x,y,t)z (x3 + y3)t,
3
u, (x,y,t)= ()c3 + y3);—'

2n+1

u X, y,t X"+ y
= ()
Finally, we approximate the analytical solution u (x,y,t) , by truncated series:

N
u(x,y,t)=}]i£r302un (x,y,t)z(x3 +y°)sinh . (69)
n=0

Example 6.6. : Consider the following three-dimensional hyperbolic-like equation with variable coefficients:

1 1 1

Uy (x Yzt ):_Ex 2uxx _Ey 2“)’." _EZ 2uzz > >0 (70)

u(x,y,z,0)=0, u, (x,y .,z ,0):x2+2y2+322, t=0.
Taking the Laplace transform on both sides of Eq. (70), we get:

1> 1 > 1 >

L {ut,(x Y,z t)} L {—Ex uxx—Ey uy, _EZ u,, (71)

An application of Eq. (10), yields:
-2 -2 1 1 1
_ 2 2 2 R S )
L {u(x LV oz ,t)} =s (x +2y 43z )+S L {—2x Uy, 2y Uy, 22 uzz}. (72)
Applying the inverse Laplace transform on both sides in Eq. (72), we get:
S 1 1 1

u (x,y,z,t) = (x2+2y2+322) t+L s 2L{—2x2u 2y W—Ezzu } . (73)

By applying the aforesaid homotopy perturbation method, we have:

ip”un :(x2+2y2+3zz)t+pL_ { 2L{——x > 0 (u,) ——y Z - zip” (un)zz}}.(ﬂ)

n=0 n=0 n=0
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Equating the coefficient of the like power of p on both sides in Eq. (74), we get:

po:uo(x,y,t)z(x2+2y2+3zz)t,

- _ 1 1 1
Py (x,y )= { L), 3 W), <32 ), }}

1

i _ _ 1 1
P, (v 0)=1 { L ) =y ), <32 ), }} (75)

wherenell *.
Using the iteration formula (75), we obtain

u, (x,y,z,t):()c2 +2y° + 322)t,
3

u, (x,y,z,t):(x2 + 2y2 + 322)%,

2n+1
(2n+1)1

Finally, we approximate the analytical solution u (x, y,z,t) , by truncated series:

u, (x,y,z,t): (—l)n(x2 +2y° + 322)

N
u (x,y,z,t)zj%/iir(}oZ u, (x,y,z,t) = (x2 +2y° + 322)sin t. (76)
n=0

Fractional homotopy perturbation transform method:
In order to elucidate the solution procedure of the fractional Laplace homotopy perturbation method
[14], we consider the following nonlinear fractional differential equation:

Dou(x,t)+R[x Ju(x 0 )+N [x Ju(x.t)=q(x.t), =0 (77)

O0<a<l, u(x,O):h(x ), t=0,

a

where D = R[x] is the linear operator in X, N[x] is the general nonlinear operator in X, and q(x,t)are

t’
continuous functions. Now, the methodology consists of applying the Laplace transform first on both sides of (77).
Thus, we get:

LADEu(x )} + L {R[xJu(x.0)+ N[xJu(x.0)} = L{g(x.0)]. (78)

Now, using the differentiation property of the Laplace transform, we have:

L {u(x,t)} = S_lh (x) + s_lq (x,t) - s_aL {R[x]u(x,t)+N[x]u(x,t)} . (79)
Operating the inverse Laplace transform on both sides in (79), we get:
u (x,t) =G (x,t) — L_1 {S_O’L{R[x]u(x,t)+N[x]u(x,t)}} , (80)

where G(x,l) , represents the term arising from the source term and the prescribed initial conditions. Now, applying

the classical perturbation technique, we can assume that the solution can be expressed as a power series in p , as
given below:

+ 0

u(x,t)zz p"un(x,t), (81)

n=0
where the homotopy parameter, p, is considered as a small parameter p e[O, 1] . The nonlinear term
can be decomposed as:

Nu(x,t)zi p"H, (u), (82)
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where i, are He’s polynomials of u,,u,,u,,...,u, ,which can be calculated by the following formula:

Hn(uo,...,u”):L i Y > plu, ,n=0,1,2,3,... (83)
n!op"” P e
Substituting Egs. (81) and (82) in Eq. (80) and using HPM by He see ([7]-[8]), we get:

ip"un<x,r>=G(x,r>—p(rl{s-%{kip"un<xar>+:z; p"Hn(u>}}} (54

n=0 n=0

This is a coupling of the Laplace transform and homotopy perturbation methods using He's
polynomials. Now, equating the coefficient of corresponding power of p on both sides, the following
approximations are obtained as:

pliuy(x,t)=G(x,1),
pliu(x,0)=-L" {SfaL{RUo (x.t)+H, (”)}}’

p" i, (x,t)=-L" {s'“L {Run_1 (x,t)+H,  (u )}},
where nell *.

Proceeding in this same manner, the rest of the components, (x,t), can be completely obtained, and the series

solution is thus entirely determined. Finally, we approximate the analytical solution u (x,t) , by truncated series:
N

u(x,t)z lim Zun(x,t). (85)

N—)oon:()

The above series solutions generally converge very rapidly. A classical approach of convergence of
this type of series is already presented by Abbaoui and Cherruault [1].

The time-fractional equations of the form (3):
Consider the following time-fractional equation with variable coefficients:

D u (x ,V .2 ,t)+f1(x ,V .2 )uxx +f2(x ,V .z )uyy +f3(x ,V oz )uzz =0,t>0 (86)
0<a<l, u(x ,V .z ,0)=f4(x ,V ,Z ), t=0.

Taking the Laplace transform on both sides of Eq. (86), we get:

L {Df;u(x,y,z,t)} =-L {fl(x,y,z)uxx+f2(x,y,z)uw+f3(x,y,z)uzz} . (87)
An application of Eq. (11), yields:

L {u(x,y,z,t)} = s_lf4 (x,y,z) s L {fl(x,y,z)uxx +/5 (x,y,z)uyy +f3(x,y,z)uzz} ) (88)
Applying the inverse Laplace transform on both sides in Eq. (88), we get:

-1
u (x,y,z,t) = f4 (x,y,z) - L {S_O’L{fl(x,y,z)um+f2(x,y,z)uw+f3(x,y,z)uzz}} ) (89)

Applying the classical perturbation technique, we can assume that the solution can be expressed as a power series in
p, as given below:

u(x,y,z,t)zf p'u, (x,y,z,t), (90)
n=0

where the homotopy parameter p , is considered as a small parameter p E[O, 1] .
Substituting Eq. (90) in Eq. (89), we get:

> pu,=f-pL’ {s“L{fli EORTSWATAINS) p"(u,,)zz}}. o1

n=0 n=0 n=0
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This is a coupling of the Laplace transform and homotopy perturbation methods using He’s polynomials. Now,
equating the coefficient of corresponding power of p on both sides, the following
approximations are obtained as:

pluy(x,y.z.t)=f,(x,y.2),

n ., -1 -a
pliu, (x,y,z,t)=—L {s L{ u,s)., +1, (un_l)yy +f5 (). }},
wherenell *.
Proceeding in this same manner, the rest of the componentsu, (x,y,z,t), can be completely obtained, and the

series solution is thus entirely determined. Finally, we approximate the analytical solutionu(x,y,z,t), by truncated
series:

N
u(x,y, z,t)z}/ig}OZun (x,y, z,t). (92)
n=0

The time-fractional equations of the form (4):
Consider the following time-fractional equation with variable coefficients:

Diu(x,y.z .t )+g (x.,y.z Juy +g,(x.y .2 )uyy +g3(x,y .,z Ju,, =0, >0 (93)
1<a<2, u(x ,V Z ,0)=g4(x ,V Z ), u, (x ,V ,Z ,0):g5(x ,V 5Z ), t=0.
Taking the Laplace transform on both sides of Eq. (93), we get:

L {Df;u(x DV .Z ,t)} =—-L {gl(x DV .Z )uxx +g2(x DV .Z )uyy +g3(x DV .Z )uzz } (94)
An application of Eq. (11), yields:

-1 2 —
L {u(x ,y,z,t)} =5 g, (x.3.2) +5 g, (p.2)-s L {gl(x V2 i 423,y 2 45 (x ,y,Z)uzz}- (95)
Applying the inverse Laplace transform on both sides in Eq. (95), we get:

uleyz) =g, (vye) vigs oy ) -1 {S‘“L{gl(x V7 P +€ (X1 2y 485 (.7 2 i }} (96)

Applying the classical perturbation technique, we can assume that the solution can be expressed as a
power series in p, as given below:

u(x,y,z,t)zi p'u, (x,y,z,t), 97)
n=0

where the homotopy parameter p , is considered as a small parameter p E[O, l].
Substituting Eq. (97) in Eq. (96), we get:

Z pnun :g4-i-tg5_pl’71 {SQL{gIZ p” (un)xx +g22 pn(un)yy + g3zp”(un)zz}}' (98)
n=0 n=0

n=0 n=0

This is a coupling of the Laplace transform and homotopy perturbation methods using He’s polynomials. Now,
equating the coefficient of corresponding power of p on both sides, the following
approximations are obtained as:

po:MO(X,y,Z,t)=g4(x,y,Z)+tg5(x,y,z),

n., _ -1 —-a
p'iu, (x sV 2 ,t)——L {s L {gl (uH)” +g, (unfl)yy +g; (“n—l)zz }},
wherenell *.
Proceeding in this same manner, the rest of the components i, (x,y,z,t), can be completely obtained, and the

series solution is thus entirely determined. Finally, we approximate the analytical solution u(x,y, Z,t), by truncated
series:

N
u(x,y, z,t)z}/ig}OZun (x,y, z,t). (99)
n=0
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Numerical examples:
Example 10.1. : Consider the following time-fractional equation with variable coefficients:

Dgu(x .t) —(;xz—i)u” =0, >0

0=<a<l u(x,0)=2x*>-1, ¢ =0.

(100)

Taking the Laplace transform on both sides of Eq. (100), we get:

L{Dgu(x,t)}:L{(%xz—%Juxx}. 101)

An application of Eq. (11), yields:

Li{u(x.t)f=s"(2x"=1)+sL {Gx ’ —%jum } (102)

Applying the inverse Laplace transform of both sides in Eq. (102), we get:

w(x,t)=2x>—1+L"<sL {(%xz—%jum} : (103)

By applying the aforesaid homotopy perturbation method, we have:

+00 1 1 +00
Zp”un =2x’=1+pL s L —x*—— Zp" (un) . (104)
n=0 2 4 n=0 =
Equating the coefficient of the like power of p on both sides in Eq. (104), we get:
u, (x,t): 2x% -1,

u, (x,t)=L" {s'“L {(;—xz - %) (o)., H
p" i, (x.0)=L" {s”‘L {(%xz - i_j (u, ). }} (105)

wherenell ”.
Using the iteration formula (105), we obtain

u, (x,t):sz -1,
-1
o (s t)_F(a +1)

a

-1 2a

s (. t)_l“(T+1) ’

|
(s t)_F(na 1)

Finally, we approximate the analytical solution u (x,l) , by truncated series:

I‘lO{

&2x -1
)= = e 106
u(x.) ,,Z_:‘)F(na+l)t (109)

The terms of the decomposition series solution, for the special case & =1, is given by:

+00 2
u(x,t)zzzx—'_lt"z(bcz—l)e’. (107)
n=0 n.



which is an exact solution to the Eq. (35).
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Figure 10.
We plotted these surfaces by using Maple software:

{a) a = D5 {b) & = 075

ufx r)

(c) Exact solution

Figure 10.1: Series approximation solution of Eq. (100), when a =0,5, a =0,75 with the first eleven terms and the
Exact solution when a =1.

Example 10.2. : Consider the following time-fractional equation with variable coefficients:

2 2

Dou(x,y ,t)+y 2_1uxx ol 2+1uyy =0, >0 108

0<a<l, u(x,y ,0):y2—1, t=0. ( )
Taking the Laplace transform on both sides of Eq. (108), we get:

» x 2 +1 y?i-1
L{D*tu(x,y,t)}zL{ T T (109)
An application of Eq. (11), yields:
2 2
_ —a x +1 y =1

L{u(x,y,t)}:sl(y2_1)+s L{ 5 uyy—Tu”}. (110)

Applying the inverse Laplace transform of both sides in Eq. (110), we get:

2 2
u(x,y,t)=y*=1+L" s‘“L{x 1, —y—lum} . (111)

2 7 2
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By applying the aforesaid homotopy perturbation method, we have:
+00 2 +00 2 +00
2 -1 _ x + 1 y - 1
Zp”un =y -1+ pL {s “L{ 5 Zp” (un )YY - Zp” (un )XX . (112)
n=0 n=0 n=0

Equating the coefficient of the like power of p on both sides in Eq. (104), we get:
0. _ 2
p .uo(x,y,t)—y -1,

o 241 2 -1
pljul(x,y,t)ZLl{S L{xz (uO)yy_yZ (uo)xx}}’

) e P41 ‘-1
p"iu, (x,y,t):Ll{s L{x;' (14”71)”_)}2 (unl)xx}}’ (113)

wherenell ",

Using the iteration formula (113), we obtain
uy (x,y,t)=y> -1,

x?+1

ul(x,y,;)zmta’
uz(x,y,t):—r(%_:l)tza’
u, (x,y,t):—% sa
yi-1
u, (x,y,t)z(—l)"mtzm’
o (1o 3:0)=(-1) ((2::)105 N 1)t(2“1)a'

Finally, we approximate the analytical solution u (x,y,t) , by truncated series:

2na
t

+00 40 (2n+)a

(1)) () S (1) . 114
ulo )=y )Z;'( ) F(Zna+1)+(x * )n_o( ) r((2n+1)a+1) 19
The terms of the decomposition series solution, for the special case a =1 , is given by
u(x,y,t):(x2+1)sint+(y2—l)cost, (115)

which is an exact solution to the Eq. (42)

Example 10.3. : Consider the following time-fractional equation with variable coefficients:

2 2 2
Diu(x,y .z ,t)=);—2um +);—4uyy +Zz—4uzz , t>0 (1 16)
0<ac<l, u(x,y,z,0)=2x 3y3z3 t=0.

Taking the Laplace transform on both sides of Eq. (116), we get:

L{Df;u(x,y,z,t)}:L{)i;umC +);;uyy +Zziun}. (117)

An application of Eq. (11), yields:

L{u(x,y,z,t)}zs1(2x3y3z3)+s°’L{x—2u Y z }

+—u_+—u 118
2" 247 247 (118)
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Applying the inverse Laplace transform of both sides in Eq. (118), we get:

2 2 2
u(x,y,2,t)=2xy’ 2 + L' {s“L{—u Y o+ Zu ) 119
(r02)= t {lzxww a19)

By applying the aforesaid homotopy perturbation method, we have:

+00 2 +00
anun = 2x3y3z3 + ijl {S { Zp xx Zp W 24 Zp }}(120)
n=0

Equating the coefficient of the like power of p on both sides in Eq. (104), we get:
u, (x, Vv, z, t):2x3y3z3 ,

2 2 2
ul ('x’ y’Z’t):L_l {S_aL {lx_z(uo )xx+ ;_4(1/[0 )yy + 5_4(1/[0 )22}} ’

b’ ;un(x,y,z,t)zL‘l{ —aL{—( v )t 57 (), + 57, 1)22}} (121)

wherenel] .

Using the iteration formula (121), we obtain
u, (x, y,z,t): 2x3y3z3,
2x3y3z3
r (a + l)
2x3y3z3
I (2a +1)

o

u, (x,y,z,t)z

2a

u, (x,y,z,t):

2x%yiz?
I (na +1)

Finally, we approximate the analytical solution u (x,y,z,l) , by truncated series:

na

u, (x,y,z,t)=

+00

2 3.3_3
u (x,y, Z,l)zgo %t"“ ) (122)

The terms of the decomposition series solution, for the special case & =1, is given by:

(x,y,2,t)= Z 22" y =2x’y’z’e". (123)

which is an exact solutlon to the Eq. (49)
Example 10.4.: Consider the following time-fractional equation with variable coefficients:

2
Df;u(x,t)zxz_lu t >0

xXx 2

1<a<2, u(x,0)=x>-1, u,(x,0)=0, ¢=0. (124)

Taking the Laplace transform on both sides of Eq. (124), we get:

L{Df’tu(x,t)}=L{x2_lu”}. (125)

2
An application of Eq. (11), yields:

L{u (x,t)}zsl(xz—l)—i-s”‘L{xz_lu”}. (126)
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Applying the inverse Laplace transform of both sides in Eq. (126), we get:

2
x -1
u(x,t):x2—1+Ll{s“L{ 5 u}} (127)
By applying the aforesaid homotopy perturbation method, we have:
+00
> p'u,=x*—1+pL" s“’L{ Zp u,) x,t)} .

n=0
Equating the coefficient of the like power of p on both sides in Eq. (128), we get:

u, (x,t)=x2 -1,

ul(x,t)zL_l{ ‘“L{ (u )., }}
p":un(x,t):Ll{ “L{ : ( .\ 1)”}} (129)

wherenell *.
Using the iteration formula (129), we obtain
u, (x,t)z x? -1,

2
L
w, (x,1)= ————1

I (a+1)

2
_ -1 2a
w2 (x.0)= r(za D

x? -1
X, t)y=——"* .
“ ( ) r (na +1)
Finally, we approximate the analytical solution u (x,t) , by truncated series:
+00 2 1

u(x,t)=> ————". (130)

n=0 F (na + 1)

The terms of the decomposition series solution, for the special case & = 2, is given by:

+o0 .2
u(x,r)=zoz2—n)l!r2"=(x2—1)coshz, (131)

which is an exact solution to the Eq. (56).

(128)

51
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Figure 10.2:

We plotted these surfaces by using Maple software:

|y Tk

W i)

(b) & = 1.75

10

mix, 1)

L A . P

(c) Exact Solution

Figure 10.2: Series approximation solution of Eq. (124), when a =1,5,a =1,75 with the first eleven terms and the
Exact solution whena = 2.
Example 10.5.:Consider the following time-fractional equation with variable coefficients:

Dou(x,y.t ):%x 2u, +%y “uy, t>0

I<a<2, u(x,y,0)=0, u; (x,y ,O):x3+y3, t=0. (132)
Taking the Laplace transform on both sides of Eq. (132), we get:

1 1
L {Df;u(x Y ,t)} =L {gx u, +gy2uyy}. (133)

An application of Eq. (11) yields:

L {u(x,y,t)} = s_2 (x3+y3) + s_aL {%xzuxx+éy2uyy}. (134)
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Applying the inverse Laplace transform on both sides in Eq. (134), we get:

u (x,y,t) = (x3+y3)t + L_1 { “L{éx u, +1y u, }} (135)

6
By applying the aforesaid homotopy perturbation method, we have:

+00
3 3 -1
Zp"unz(x +y )t+pL s { pr n " —y Zp } . (136)
n=0 n=0

Equating the coefficient of the like power of p on both sides in Eq. (136), we get:

U, ()c,y,z‘):(x3 + y3)t,
I R i 1
ul(xﬂy’t):L I{S L{gxz(uo)xx+gy2(uo)y}’}},

pn ‘u, (X, y,t): ! {S_aL {%xz (unfl)xx +%y2 (unl)yy}}’ (137)

wherenell *.
Using the iteration formula (137), we obtain

u, (x,y,t)z ()c3 + y3)t,

3 3
X +y ta+1

b ﬂt = b
(% 01) [ (a+2)
x’ + y3 2a+1
t)=—t
wa (1) I (2a +2) ’
x3 + y3 na +1
t)=——""-—"—
w, (% 01) T (na +2)
Finally, we approximate the analytical solution u(x,y,t) , by truncated series:
< X3+y3 +1
u(x,y,t)=y —————"". 138
(r.31) ,,Z:F(na+2) (138)
The terms of the decomposition series solution, for the special case @ =2 , is given by:
X +y f 2040 _ .
u(x,y.t x>+ y?)sinhz, 139

which is an exact solutlon to the Eq. (63).
Example 10.6. : Consider the following time-fractional equation with variable coefficients:

1 1 1
Dju(x .y .,z t )=_§x 2uxx —Ey 2uyy _EZ Zuzz , t>=0 (1 40)
1<a<2, u(x,y,z,0)=0, u,(x,y .z ,O)=x2+2y2+3z 2 t=0.

Taking the Laplace transform on both sides of Eq. (140), we get:

L {Df‘,u(x,y,Z,t)} =-L {%xzuxx +%y2uyy +%22uzz}. (141)

An application of Eq. (11), yields:

L {u(x,y,z,l)} = s_2 (x2 -1-2y2 +322) ) {%xzuxx —%yzuw +%ZZLIZZ} . (142)
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Applying the inverse Laplace transform of both sides in Eq. (142), we get:

2.n. 2 22 1) gl 1o 1, }
u\x,y,z,t] =\x"+2y"+3z" |t = L s "L{=X"u, +=yu, +—zu_ (.
( Yy ) ( Y ) {2 XX 2y VY 2

(143)

By applying the aforesaid homotopy perturbation method, we have:

ip”un =(x2 +2y° +322)t—pE1 S“L{% xzip” (u,).. +%y2§:p” (u, )W +%zzip” (u, )Z} (144)
n=0 n=0 n=0 n=0

Equating the coefficient of the like power of p on both sides in Eq. (144), we get:

p0 U, (x,y,z,t): (x2 + 2y2 + 3zz)t,

pl :ul (x7 y727t):_L71 {SQL {%xz (uo )xx+

_ w 1 1 1
p'iu, (x,y,z,t):— L {s L {Exz (un_l )m+5y2 (un_1 )yy + 522 (un_l )22}},

wherenell ”.
Using the iteration formula (145), we obtain

u, (x,y,z,t):()c2 +2y%+ 3zz)t,
x? +2y2 +3z? a1
t
I'(a+2)

u, (x,y,z,t)z—

b

x>+ 2y2 +3z7 p2anl
T (2a + 2)

2

U, (x,y,z,t):

. X2 Jr2y2 +3z° .
F(na+2)

u, (x,y,z,t)=(-1)

1

1
y2 (uo W +522 (uo )ZZ}},

(145)

Finally, we approximate the analytical solution u (x,y,z,l) , by truncated series:

< n x2+2y2+3Z2 no+
u(x,y,z,t)zz(;(—l) mt 1

(146)

The terms of the decomposition series solution, for the special case & = 2, is given by

2n+l1

u(x,y,z,t)zio(—l)" (x2+2y2+322)

o (2n + 1)!: (

which is an exact solution to the Eq. (70).

CONCLUSION:

In this paper, we have seen that the coupling of
homotopy perturbation method (HPM) and the Laplace
transform, proved very effective to solve certain type of
partial and fractional partial differential equations.

The proposed algorithm (HPTM) is suitable for such
problems and is very user friendly. The advantage of
this method is its ability to obtain exact solutions of
partial and fractional partial differential equations. The
result obtained in the examples presented shows that
this modified method is very powerful and efficient
technique in finding exact solutions for wide classes of
problems.

x2+2y2+3zz)sint,

(147)
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