
DOI: https://dx.doi.org/10.4314/gjpas.v27i1.6  

GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 27, 2021: 43-53 
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579 

www.globaljournalseries.com, Email: info@globaljournalseries.com 
A NEW WEIBULL EXPONENTIATED INVERTED WEIBULL 
DISTRIBUTION FOR MODELLING POSITIVELY-SKEWED DATA 
 

BRAIMAH J. O., ADJEKUKOR J. A., EDIKE N. AND ELAKHE  S. O. 

(Received 12 November 2020; Revision Accepted 27 November 2020)
 

 

ABSTRACT 
 
An Exponentiated Inverted Weibull Distribution (EIWD) has a hazard rate (failure rate) function that is unimodal, thus 
making it less efficient for modeling data with an increasing failure rate (IFR). Hence, the need to generalize the EIWD 
in order to obtain a distribution that will be proficient in modeling these types of dataset (data with an increasing failure 
rate). This paper therefore, extends the EIWD in order to obtain Weibull Exponentiated Inverted Weibull (WEIW) 
distribution using the Weibull-Generator technique. Some of the properties investigated include the mean, variance, 
median, moments, quantile and moment generating functions. The explicit expressions were derived for the order 
statistics and hazard/failure rate function. The estimation of parameters was derived using the maximum likelihood 
method. The developed model was applied to a real-life dataset and compared with some existing competing lifetime 
distributions. The result revealed that the (WEIW) distribution provided a better fit to the real life dataset than the 
existing Weibull/Exponential family distributions. 
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INTRODUCTION 
 
Generalization of a probability distribution is a common 
technique used for introducing flexibility to classical 
distributions through the introduction of parameters or 
reduction of some identified redundant parameters. 
According to Alzaatreh, Lee and Famoye, the Weibull 
distribution was named after Walodi Weibull and has 
been used to model some families of distributions by 
several authors with the intention of generating more 
flexible distributions [1]. The Weibull-X family was 
proposed by [1] while Bourguignon, Silva and Cordeiro 
proposed the Weibull-G family [2]. Several flexible 
distributions have been developed from these important 
families of distributions. Alzaatreh, Famoye and Lee 
developed Weibull-Pareto [3] while Aljarrah, Famoye and 
Lee developed a new Weibull-Pareto distribution [4]. 
Merovci and Elbatal developed Weibull Rayleigh 
distribution [5]. Oguntunde, Balogun, Okagbue and 
Bishop developed the Weibull Exponential distribution [6] 
while Yahaya and Sa’ad introduced the Weibull-Burr XII 
distribution [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By means of the inverse transformation of variables, 
some baseline distributions have been inverted and 
generalized. Some of the existing results revealed that 
inverted distributions when extended can also provide a 
more flexible distribution than the baseline distribution. 
Voda introduced the use of Inverse Rayleigh (IR) 
distribution [8] while the Inverse Exponential (IE) and 
their study revealed that the IW is useful for modeling 
systems with failure rates common in biological and 
reliability studies. Drapella and Mudholkar and Kolia as 
well studied the Inverse Weibull Distribution and 
projected complementary Weibull and reciprocal Weibull 
as another names for the model [9], [10] while Khan, 
Pasha, and Pasha studied the flexibility of IW distribution 
[11]. De Gusmao, Ortega, and Cordeiro proposed the 
Generalized Inverse Weibull (GIW) distribution [12] while 
Elbatal and Muhammed later developed the 
Exponentiated Generalized Inverse Weibull (EGIW) 
Distribution [13].  
It was also observed that generalization of distribution 
using the inverse of baseline distributions continues to 
achieve more attention among researchers in recent  
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times as evident in the following studies. 
Fatima, and Ahmad proposed the Weighted inverse 
Rayleigh distribution [14] while Oguntunde, Adejumo and 
Owoloko proposed the Weibull Inverted Exponential 
distribution [15]. The odd Frechet Inverse Weibull 
distribution was developed by [16], odd Frechet Inverse 
Rayleigh by [17], Inverse Weibull Inverse Exponential 
(IW-IE) distribution by [18], while [19] extended Inverse 
Rayleigh using the Half-Logistics transformation. 
The IW is a useful model that attracts the attention of 
several researchers, it has been studied by several 
authors and also extended as Exponentiated Inverted 
Weibull (EIW) by [20]; the authors introduced the 
standard two-parameter exponentiated Inverted Weibull 
(EIW) distribution. [21] studied (EIW) distribution by 
investigating methods of parameter estimations using 
classical likelihood and Bayesian estimators for samples 
from complete and Type II censoring scheme. [22] 
extended (EIW) distribution by carrying out a 
comparative study of some estimation methods some of 
which are the MLE, least square, least line based on 
grouped data.  

However, [23] in their investigation revealed that the EIW 
by [24] has a particular shortcoming, [23] proved that the 
standard two-parameter EIW has a unimodal shape that 
makes it ineffective in modeling data with increasing 
failure rate (IFR).Further extension on EIW was carried 
out by [25] using Quadratic Rank Transmutation Map 
(QRTM) and the Proposed Transmuted Exponentiated 
Inverse Weibull (TEIW) distribution applied to medical 
sciences data set.  
This study is aimed at extending (EIW); the need for the 
study is motivated by the fact that preliminary findings 
revealed situations where the EIW model failed to 
provide a better fit than the IW model for some types of 
dataset. In [23], their findings also revealed that EIW has 
a hazard/failure rate function that is unimodal shape, 
thereby making it less effective for modeling data with 
increasing failure rate; hence it is necessary to 
generalize the EIW model to obtain a model that is 
capable of modeling such types of dataset. This study is 
using the Weibull Generalized class of distribution 
proposed by [2] to generalize the EIW. 

 
THEORY / CALCULATIONS 
 
THE WEIBULL DISTRIBUTION 

The cumulative distribution function (cdf) of the Generalized Weibull family distribution is defined as: ���� = � ��	
�������	�����������          (1) 

���� = 1 − ��� ������������
          (2) 

while the corresponding density function is given as: ���� = ������ ����� ���������� �!� ��� ������������
        (3) 

where� > 0, � > 0, � > 0    

The Inverted Weibull (IW) distribution as proposed by [26] has the cdf and pdf given respectively as follows: 
 ���� = �%&�'(

           (4) ���� = )*+��+���%&�'(
          (5)  

where � > 0, * > 0, ) > 0 ;  * is the quality or scale parameter while ) is the shape parameter. 
The standard two-parameter Exponentiated Inverted Weibull (EIW) distribution was also proposed by [20] with the cdf 
and pdf defined respectively as: ���; *, �� = %����'.

; � > 0, * > 0, � > 0       (6) ���; *, �� = *����
/�� %����'.
         (7)   � > 0, * > 0, � >2.22

 
THE WEIBULL EXPONENTIATED INVERTED WEIBULL (WEIW) DISTRIBUTION 
From equation (4), the cdf of Exponentiated Inverted Weibull (EIW) distribution is defined for this study as follow: 0��; *, ), 1� = 2�%&�'(34

          (8) 

The density function obtained from the derivative of equation (8) with respect to � is given as: ���� = 1)*+���+/�� 2�%&�'(34
 

���� = 5)*+���+/���6%&�'(
         (9) 

The proposed (WEIW) distribution has the cdf derived, using equations (2) and (8) as follow:  
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The associated pdf of WEIW is obtained from the first derivative of ���� in equation (10) and is given as: 

���� = �1�)*+���+/�� J2�%&�'(34K


J1 − 2�%&�'(34K
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���� = ��1)*+���+/�� L?�C@&�A(M�

L��?�C@&�A(M�!� �7 N−� L ?�C@&�A(
��?�C@&�A(M
O     (11) 

where� > 0;  �, � > 0  and5, ), * > 0 . 
 
 

The WEIW distribution has *as scale parameter with �, �, 1 and ) as shape parameters 
 

 
Figure 1: Plots of the cumulative distribution function and the probability density function 
 

DEVELOPMENT OF THE PROBABILITY FUNCTION OF WEIW DISTRIBUTION 
      The probability density function of WIEW is written as: 

���� = ��1)*+��+�� L?�C@&�A(M�

L��?�C@&�A(M�!� P���        (12)     

where R(x) = reliability function, � > 0;  �, � > 0  and1, ), * > 0  
On applying the power series expansion on the reliability function, the resulted function became: 

P��� = �7 N−� L ?�C@&�A(
��?�C@&�A(M
O=∑ N����RS! − −�S L ?�C@&�A(

��?�C@&�A(M
SO∞SU�  

On substituting P��� into ���� and performing some arithmetic operations, we obtain: 

���� = �1�)*+��+�� J�4%&�'(K


J1 − �4%&�'(K
/� V 8
:�−1�SW! �S X �4%&�'(
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Applying the binomial series expansion on equation (13) in the form: �1 − Z �[=  ∑ ����\]�[/^�^! ]�[�∞^U� Z^ 

J1 − �4%&�'(K�
�S/��/�
=∑ ����\]�
�S/��/�/^�^! ]�
�S/��/��∞^U� �4^%&�'(

      (14) 
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On substituting equation (14) into equation (13), the resulting equations become: 
 

���� = 1�)*+��+�� V �−1�SW!∞

SU� �S/� J�4%&�'(K
�S/�� V �−1�^_���W + 1� + 1 + a�a!  _���W + 1� + 1�∞

^U� �4^%&�'(
 

= 1�)*+��+�� V �−1�SW!
∞

SU� �S/� V �−1�^_���W + 1� + 1 + a�a!  _���W + 1� + 1�
∞

^U� J�4%&�'(K
�S/�� �4^%&�'(
 

= 1�)*+��+�� V V �−1�S/^�S/�_���W + 1� + 1 + a�W! a!  _���W + 1� + 1�
∞

^U�
∞

SU� J�4%&�'(K
�S/��/^
 

= 1�)*+��+���6%&�'( V V �−1�S/^�S/�_���W + 1� + 1 + a�W! a!  _���W + 1� + 1�
∞

^U�
∞

SU� J�4%&�'(K
�S/��/^��
 

 

= �1�)*+��+���4%&�'( ∑ ∑ ����R!\�R]�
�S/��/�/^�S!^! ]�
�S/��/��∞^U�∞SU� J�4%&�'(K
�S/��/^��
    (15) 

= ���� V V �−1�S/^�S_���W + 1� + 1 + a�W! a!  _���W + 1� + 1�∞

^U�
∞

SU� �0��� 
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= V V �−1�S/^�SW!  a!
∞

^U�
∞

SU�
_���W + 1� + 1 + a�_���W + 1� + 1� �����0��� 
�S/��/^�� 

= bS,^c�����0��� d          (16) 

where c = ��W + 1� + a − 1 and  bS,^ = ∑ ∑ ����R!\dS! ^!∞^U�∞SU� �R]�
�S/��/�/^�]�
�S/��/��  

 
Equation (16) becomes the resulting equation from the 
above expansion. It is discovered from the resulting 
equation that the WEIW distribution can be articulated 
as a mixture version of the baseline distribution defined 

in equation (6). Also, some statistical properties of the 
WEIW can be derived from those of Exponentiated 
Inverse Weibull distribution. 

 
PROPERTIES OF THE WEIW DISTRIBUTION 
 
Some of the properties of the new distribution are conferred in this section.
 
RELIABILITY AND HAZARD/FAILURE FUNCTIONS OF WEIW DISTRIBUTION 

 

The survival (reliability) function is derived and given as: 

P��� = 1 − ���� =  �7
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� > 0;  �, � > 0  ef�1, ), * > 0  
The hazard/failure rate function is obtained using: 

ℎ��� = h�����i��� = ��1)*+��+�� L?�C@&�A(M�

L��?�C@&�A(M�!�       (18) 

� > 0;  �, � > 0  ef�1, ), * > 0  
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The reversed hazard/failure rate function is obtained as: 
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� > 0;  �, � > 0  ef�1, ), * > 0  
 
 

 
Figure 2: The Survival functions and Failure (Hazard) rate Plots

 
The failure/hazard rate function is described by different shapes such as decreasing, increasing, reversed J-shape 
and inverted bathtub depending on parameter values. 
Theorem 1: If m is a random variable from WEIW distribution, then the hazard rate function is of the form represented 
as: ℎnopn��� = �opn��� ��qrs��� ����tqrs��� �!�          (20) 

 
Proof: 

ℎ��� = ��1)*+��+�� L?�C@&�A(M�

L��?�C@&�A(M�!� =��1)*+��+���4%&�'( L?�C@&�A(M���

L��?�C@&�A(M�!� 

= ���� ����� ���������� �!�  =���� ����� ����t��� �!� 

where R(x) = 1-G(x), � > 0;  �, � > 0  ef�1, ), * > 0  
 
 
QUANTILE FUNCTION AND MEDIAN OF WEIW DISTRIBUTION 
Theorem 2:  If m is a random variable from WEIW distribution, then the quantile function is given as: 

u�v� = * L−wx� y ���z{|}���~���/�
�/���z{|}���~���/���/4M��/+

        (21) 

The quantile function can be proved using the relation u�v� = ����v�, where � is a random variable from uniform 
distribution on interval (0, 1) 
The median is obtained for the middle observation at v = 0.5 and is given by; ��c�Wef� = * (22) 

Let m be a random variable from the WEIW distribution, simulation can be done through the inverse transformation of 

a variable using uniform interval ��0, 1� and the random variable m is taken as,  

m = * L−wx� y ���z{|}���~���/�
�/���z{|}���~���/���/4M��/+

         (23) 
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MOMENT OF WEIW DISTRIBUTION 

Moments are vital statistical measure for characterizing distributions; the j��moment for the WEIW distribution is 
derived as follows:  

Theorem 3: Let m be a random variable from the WEIW distribution, then the j��moment of m is given by the following 
expression. �S,^*�1���W + 1� + a �(_�1 − �+�          (24) 

Proof: 
From equation (14), 
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�S/��/^
        (25) 

�S,^ = V V �−1�S/^�SW!  a!∞
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The j��ordinary Moment of the WEIW distribution is given by: ��′ =��m�� = � ��∞� ���, ���� 

= �S,^1)*+ � ����+/��∞

� �4�
�S/��/^ %&�'(�� 

= �S,^1���W + 1� + a �(_ %1 − j)' *� = �S,^*�1���W + 1� + a �(_ %1 − j)' 

THE MEAN AND VARIANCE OF WEIW DISTRIBUTION 

The mean of WEIW random variable mis given by: ��m� = �S,^*1���W + 1� + a �(_ %1 − �+'         (26) 

Variance is obtained from ��m�� − ���m� � 

Variance=�S,^*�1���W + 1� + a �(_ %1 − �+' *� − ��S,^*1���W + 1� + a �(_ %1 − �+'�� �S,^*1 �*���W + 1� + a �(_ %1 − �+' − �S,^*1 ����W + 1� + a �(_ %1 − �+'���                 (27) 

�S,^ = V V �−1�S/^�SW!  a!
∞

^U�
∞

SU�
_���W + 1� + 1 + a�_���W + 1� + 1�  

 
MOMENT GENERATING FUNCTION OF WEIW DISTRIBUTION 
The Moment generating function is derived as follows: 

Theorem (4): If m has WEIW distribution, then the moment generating function has the form expressed as; �S,^,�*�1���W + 1� + a �(_ %1 − �+'          (28) 

Proof: 
The Moment generating function for a continuous random variable is defined by: ���	� = ����� = � ��������∞�           (29) 

�� = V @1 + 	���j! A =∞

�U� V 	���j!
∞

�U� = V 	�j!
∞

�U� ��m�� 

����� = V 	�j!
∞

�U� �S,^*�1���W + 1� + a �(_ %1 − j)' 

where�S,^ = ∑ ∑ ����R!\�RS! ^!∞^U�∞SU� ]�
�S/��/�/^�]�
�S/��/��  ����� = �S,^,�*�1���W + 1� + a �(_ %1 − j)' �S,^,� = ∑ ∑ ∑ ����R!\���RS! ^!�!∞^U�∞SU� ]�
�S/��/�/^�]�
�S/��/��∞�U� . 
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CHARACTERISTIC FUNCTION OF WEIW DISTRIBUTION 

The characteristics function for a continuous random variablem fromWEIW distribution is given as follows ∅��	� = ��S��� = � S��������∞�          (30) 

��1 + W	� + �W	���2! + ⋯ �������∞

�  

= ∑ �S����!∞�U� � ��������∞� =∑ �S����!∞�U� ��m�� 

∅��	� = V �W	��j!
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�U� �S,^*�1���W + 1� + a �(_ %1 − j)' 

�S,^ = V V �−1�S/^�SW!  a!
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^U�
∞

SU�
_���W + 1� + 1 + a�_���W + 1� + 1�  

 
DISTRIBUTION OF ORDER STATISTICS OF WEIW DISTRIBUTION 

Let X�, X�, … , X� be independent and identically distributed random variables with associated order statistics  X��:��, X��:��, … , X��:�� of size n from a distribution with density and cumulative functions denoted as f�x� and F�x� 

respectively, then the probability density function of the r��order statistics X��� is given by: ���: ��� = �¡��, ��/�� ��������1 − ����� ������       (31) 

 

The j��order statistics for a WEIW random variable m  is derived using equation (12) and (13) in equation (31) as 
follows: 
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Using Binomial expansion, it can be re expressed as: ���: ��� = �¡��, ��/�� ∑ �−1�� ��SU� ª ��S «��������� �/S��       (33) 
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This minimum order statistics from equation (33) when j = 1 is given by: 
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This maximum order statistics from equation (26) when j = fis given as: 
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(MAXIMUM LIKELIHOOD ESTIMATE (MLE) 

Let m�, m�, … , m  be random sample of size n from the WEIW distribution, the method of maximum likelihood for 
estimating the unknown parameters is applied to the density function to obtain the likelihood and log-likelihood 
functions presented respectively as: 
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The derivatives of the log-likelihood function with respect 
to the unknown parameters when equated to zero for 
simultaneous solutions can provide us with the 
estimates which is analytically difficult owing to the 
complex nature of the function, hence the Newton 
Raphson Algorithm in R-software could be employed for 

obtaining numerical solutions for the estimates. The 
confidence intervals are obtainable from the inverse 

dispersion matrix µ��ª∅¶« which can be generated from 

second derivatives of log Likelihood function.

 
 
The 100�1 − 7�%two sided confidence intervals for the parameters are of the form: �̧ ¹ Zl/�ºµ��

ª∅¶« ,   )» ¹ Zl/�ºµ��++ª∅¶«;     5» ¹ Zl/�ºµ��66ª∅¶«;  

�¼ ¹ Zl/�ºµ����ª∅¶« and *» ¹ Zl/�ºµ��..ª∅¶« 

where�� is used as the 100 �1 − 7�% upper percentile of the standard normal distribution.  
 
DISCUSSION OF RESULTS / APPLICATION 

The findings from the study and application to real life 
examples are presented in this section. 

 

 
APPLICATION TO REAL DATASET 

In this section, we demonstrate the superiority of the 

proposed distribution WEIW using real data sets in 

reliability engineering to select the best model among 

the competing models. A statistical software (R-4.0.3) 

is used to obtain the MLE of the model parameters. 

For the model selection, the criteria used are Akaike 

information criterion (AIC) and Bayesian information 

criterion (BIC) as: ½¾¿ = 2) − 2wf�¬� and À¾¿ = 2wf�¬� + )wf�f� 

where k is the number of parameters in the model and 
L is the maximized value of the likelihood function for 
the model. The AIC is the measure of the relative 
quality of a statistical model for a given set of data. BIC 
is also a criterion for model selection among a finite set 

of models and is closely related to the AIC. In Table 2, 
the IEW model is more appropriate in terms of AIC and 
BIC since the values of AIC and BIC of the WEIW 
model were smallest among the competing models. 
Therefore, we can conclude that the performance of 
the WEIW model is better. 
The output values from goodness of fit for making 
decisions were also generated for ¬¬ P-values and 
Kolgomorv Smirnoff (K-S) statistics which are also 
choice of better model selection criteria. The model 
with best fit to the data is expected to have the 
smallest estimated value of estimated model criteria.  
The dataset on tests of the endurance of deep groove 
ball bearings from [28] was adopted and applied to the 
WEIW distribution and other competing family-related 
models. The results are presented in Table 1 and 
Figure 3.

 
Table 1: Maximum Likelihood Estimates and Criteria for Model Selection for drug-resistant tuberculosis on Ball 
Bearings Data 
 

Models Parameter Estimates AIC BIC LL K-S P-
value 

WEIW �¼ =0.6712,�̧=0.0771,*»=16.1518, 5»=3.0251,)» =0.9797 778.430 789.741 384.377 0.1343 0.1344 

IW *»=53.0868, )»=1.4208 779.600 784.123 387.798 0.1617 0.1618 

EIW *»=53.4332, 5»=1.0032,  )» =1.7858 797.072 803.858 395.534 0.1672 0.1673 

St.EIW , 5»=12.9671,  )» =0.6857 835.268 839.791 415.632 0.2313 0.2314 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Plots of the pdf and cdf of distributions on Ball Bearings Data
From Table 1, it is revealed that the WEIW has the smallest values of chosen model criteria and the smallest    
Kolmogorov Smirnoff test statistics; it has also revealed that the WEIW has the largest p-value and the lowest values 
of model chosen decision criteria which is an indication of a better performance over other models in Table 2. The 
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three-parameter EIW and the standard two-parameter st.EIW gave a worse fit than IW. Figure 3 which characterize 
the density and estimated cdf plots with the other related models.  Figure 3 which characterizes the density and 
estimated cdf plots with the other related models, also reinforced the conclusions from the computations in Table 3 
that WEIW is the best choice for modeling these dataset. 
 

 
Figure 4:The TTT plot for the endurance of deep groove 
ball bearings data. TTT = total time on test. 
Figure 4 provides a total time on test (TTT) plot for the 
durability of deep groove ball bearings data. Since the 

plot is concave and lying above the line, it means that its 
distribution may have an increasing hazard rate. 
Therefore it can be properly accommodated by a WEIW 
(α, β, λ) model with increasing failure rate.

 
CONCLUSIONS 
 
The Exponentiated Inverted Weibull (EIW) model has 
been extended to obtain the WeibullExponentiated 
Inverted Weibull distribution (WEIW). The WEIW 
addresses some of the limitations identified with the EIW 
and also provides better flexibility than the EIW and the 
IW models. The statistical properties studied show that 
the distribution is positively skewed; the shape can be 
unimodal, approximately symmetric and is suitable for 
modeling right-shaped (positively skewed) data. The 
parameters of distribution were estimated using 
maximum likelihood estimation. A real-life dataset was 
used to examine its performance, and results from data 
analysis revealed that the WEIW distribution has the 
capacity to provide a better fit for modeling the real-life 
data. 
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