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ABSTRACT 

 
Monitoring and predicting the climatic phenomenon are the major global concern because of its devasting effects on 
people's lives and their environments. As a result of this, there is a need to understand the natural processes that 
control the dynamic evolution of the climatic phenomenon. Air temperature and relative humidity data collected from 
Nsukka station by the Centre for Atmospheric Research (CAR), measured in 5 minutes time steps from 1st January till 
31st December, 2012 have been analysed. Dew point temperature was calculated from the actual readings of air 
temperature and relative humidity using appropriate empirical relation. In this paper, Average Mutual Information 
(AMI), False Nearest Neighbour (FNN) and Lyapunov Exponent methods were used to study changes and transitions 
in the dynamics of these meteorological parameters or temporal deviations from their overall dynamical regimes. The 
results show that the dynamic model needed to describe the data has 4-5 dimensions for air temperature, 4-6 for 
relative humidity and 4-5 for dew point temperature. Positive and negative Lyapunov exponents were observed in the 
air temperature, relative humidity and dew point temperature time series. This indicates that there exists periodicity 
inherent in the chaotic behaviour of these meteorological time series, causing a transition from chaoticity (positive 
Lyapunov exponent) to periodicity (negative Lyapunov exponent) and thereafter to chaoticity (positive Lyapunov 
exponent). The results, therefore, provide additional information about the climate transitions, maximum predictability 
and also, for formulating a weather prediction model. 
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INTRODUCTION 
 
The Earth’s tropospheric layer is the region of the 
Earth’s atmosphere where most terrestrial climatic 
phenomena occur. The average weather conditions over 
a long period describe the climate of a particular 
location. Therefore, it’s imperative to understand the 
behaviour of specific weather parameters that influence 
an area's atmospheric conditions. Some of these critical 
parameters, such as relative humidity, air temperature, 
and dew point temperature, significantly impact the 
environment, agriculture, industry and economy 
(Shrestha et al., 2019). Interestingly, these parameters 
are interrelated such that they influence each other’s 
behaviour (Chabane et al., 2018). The relative humidity 
(RH) is the amount of water vapour in an air sample 
(Abu-Taleb et al., 2007). It is one of the critical weather 
parameters that influence the amount of solar radiation 
in an area. RH has a strong effect on the formation of 
fog, smog, cloud, and atmospheric visibility. It can be 
expressed as the ratio of water vapour in the air to the 
maximum water vapour the air can hold at a given 
temperature (Nicholas et al., 2018). Thus, the air 
temperature is a determinant of the capacity of air to 

hold water vapour. Temperature is a measure of how 
hot or cold the atmosphere is. It is another crucial 
parameter that is widely used to determine the change 
in the weather. Also, it plays a significant role in 
controlling other elements of weather, such as the dew 
point temperature. The dew point temperature is the 
temperature at which water vapour in the atmosphere 
will condense into liquid water at the same rate at which 
it evaporates (Shrestha et al., 2019).  
The most preferred of these three main weather 
parameters is the dew point temperature. This is 
predicated upon the fact that meteorologist often uses it 
for forecasting weather and using it as an indicator of 
how comfortable and uncomfortable warm air will feel 
(Ukhurebor et al., 2017). Generally, many studies have 
been carried out in different locations globally and 
various applications of whether parameters have been 
suggested in the literature. However, studies at more 
local scales are needed. Consequently, this research 
aims to study changes and transitions in air temperature 
dynamics, relative humidity, and dew point temperature 
or temporal deviations from their overall dynamical 
regimes in the tropospheric region of south-east Nigeria.
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2 Materials And Methods 
2.1 Evaluation of dew point temperatures from 
relative humidity and air temperature 
It has been established that the dew point depends upon 
relative humidity and air temperature. However, studies 
show that the dew point is significantly controlled by air 

temperature rather than relative humidity (Lawrence, 
2005). 
The dew point temperatures are computed from air 
temperature and relative humidity using the 
mathematical relation given in Equation (1) (Lawrence, 
2005).
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Where        ,        ,            is the dew point, T is the temperature and RH is the relative humidity.  

 
2.2 Determination of embedding dimension and time 
delay  

The time delay   and embedding dimension d are two 
essential parameters needed to unfold the attractors in 
phase space: The autocorrelation method and mutual 
information approach are the two Standard approaches 
to estimate the optimal time delay τ (Fraser and 
Swinney, 1986). The autocorrelation method looks for 
linear independence of two variables while mutual 
information approach takes into account nonlinear 
correlations by measuring how far the pairs of random 

variables of a time series data are dependent to each 
other (Renjini et al., 2020).  The method of average 
mutual information to determine the time delay was 
proposed by Fraser and Swinney (1986). This method 
gives vital information on how the measurements of the 
two state variables      and        are connected at 
time t and    , respectively, by presuming that the 

state      is known (Abarbanel, 1996). The average 
mutual information is computed by using equation (2):
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Where   is the length of the time series,                 
denotes the joint probability density for the 
measurements         and          , individual 

probabilities for the measurements of      and        
are         and          . The appropriate time delay 
  is defined as the first minimum of the average mutual 

information     . Then the values of      and        
are independent enough of each other to be useful as 
coordinates in a time delay vector but not so 
independent as to have no connection with each other at 
all.  
The most suitable choice for time delay     is obtained 
from the first minimum in the AMI graph since this is the 
time when        adds maximum information to the 
knowledge we have from     ( Shang et al., 2005).  
The false nearest neighbour (FNN) method to determine 
the minimal sufficient embedding dimension d was 
proposed by Kennel et al (1992). Each embedding 
dimension d of a set of time-series data is estimated 

from the percentage of false nearest neighbours (FNN). 
The point at which the first percentage of false nearest 
neighbours (FNN) drops to zero is chosen as suitable 
choice of the minimal sufficient embedding dimension d.  
 
2.3 Lyapunov exponents 
Lyapunov exponents determine a long-time average 
exponential rate of divergence or convergence of nearby 
trajectories in the phase space (Ott, 1993). If a system 
has at least one positive Lyapunov exponent, then it is 
assumed to be chaotic. Due to the sensitive 
dependence on initial conditions, nearby trajectories in 
phase space tends to diverge or converge making the 
system’s evolution difficult to predict even after a few 
time steps. Many approaches have been propposed for 
computation  of  the maximal Lyapunov exponent out of 
which Rosenstein et al. (1993) is utilised. The maximum 
Lyapunov exponent ia computed by using eqution (3).
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Where    
 are embedding vectors or reference 

points,  (   
) is the neighbourhood of    

 with diameter 

r. For a suitable diameter r  and for all embedding 

dimensions      which is the minimum dimension, if 

the exponential increase of the stretching factor        
exhibits a flat region (a linear increase) signifying the 
saturation effect of exponential divergence, then its 
slope yields an estimation of the maximal Lyapunov 
exponent  . A positive Lyapunov exponent   shows 
exponential divergence of the nearby trajectories (an 

unstable orbit) indicating chaotic behaviour of a system. 
When the orbits of dissipative or non-conservative 
systems are attracted to a stable fixed point or periodic 
orbit, then such a system indicates negative Lyapunov 
exponents while Zero Lyapunov exponents are 
characteristic of conservative systems for which the orbit 
is a neutral fixed point (Nagesh- Kumar and Dhanya, 
2011). 
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Results and discussion 
Air temperature, relative humidity and dew point 
temperature data from Nsukka station by the Centre for 
Atmospheric Research (CAR), measured in 5 minutes 
time steps have been analysed. These meteorological 
time series contain 8928 data points from 1

st
 January till 

31
st
 December, 2012. 

Table 1 shows the average mutual information (AMI) 
plot variations from January to December, 2012 with 
their first minimum corresponding to each value on the 
delay time axis, hence giving the optimal delay time,  . 
The delay times obtained using the AMI method ranged 
from 58 to 77, 51 to 82 and 63 to 78 for air temperature, 
relative humidity and dew point temperature respectively 
(see Table 1).

     

                                                  Table 1: The average mutual information 
 

Month Air temperature Relative humidity Dew point temperature 

Jan. 71 70 71 

Feb. 71 79 71 

Mar. 75 78 65 

Apr. 77 76 75 

May 73 69 77 

Jun. 72 73 66 

Jul. 73 74 78 

Aug. 74 76 70 

Sep. 74 70 75 

Oct. 67 61 63 

Nov. 70 51 76 

Dec. 58 82 74 

 
The embedding dimension (d) is calculated using the 
fraction of false nearest neighbours (FNN) depicted in 
figure 1, representing the 12 months. Figure 1 shows the 
variations of optimal values of the embedding dimension 
(d) for the 12 months at which the fraction of nearest 
neighbours drops to zero. The embedding dimension (d) 
were found to be in the range 4-5, 4-6 and 4-5 for air 
temperature, relative humidity and dew point 
temperature, respectively. For air temperature and dew 

point temperature values, their dynamical transformation 
appears to be governed by a lower number of variables 
compared to relative humidity values. These values are 
variables that are necessary to correctly display the 
attractors of these meteorological parameters dynamics 
in the phase space. These variables give useful 
information about the dimensionality and complexity of 
the underlying dynamical behaviour of a system by 
giving rise to the variability of the time series.  

 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 

Figure 1: Variation of FNN for Air Temperature, Relative Humidity and Dew point temperature. 
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Table 2: Slope of stretching factor (maximum Lyapunov exponents) 
 

Month Air Temperature Relative Humidity Dew point temperature 

Jan 0.5337 0.7721 0.8256 

Feb 0.2956 0.1528 0.5763 

Mar -0.1484 0.484 0.2483 

Apr 0.5798 -0.1912 0.5617 

May 0.081 0.0668 0.1104 

Jun 0.7599 0.3843 0.6498 

Jul 0.7943 0.4121 0.7176 

Aug -0.2718 -0.1559 -0.3922 

Sep -0.4234 0.0432 -0.5403 

Oct 0.2395 -0.0867 0.3366 

Nov -0.1048 0.1945 -0.1706 

Dec 0.2108 0.1651 0.389 

 

 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The global Lyapunov exponents for air temperature (a), relative humidity 
(b) and dew point temperature (c) time series. 

 
The dynamic model needed to describe the data has 4-5 
dimensions for air temperature, 4-6 for relative humidity 
and 4-5 for dew point temperature. This indicates the 
presence of more degrees of freedom in the system 
governing the relative humidity series than in that 
governing air temperature and dew point temperature 
series.  
Table 2 shows the distribution of the negative and 
positive Lyapunov exponents of air temperature, relative 
humidity and dew point temperature for twelve months. 
Figure 2 depicts the computed values of the Lyapunov 
exponents of air temperature, relative humidity and dew 
point temperature from January to December, 2012. The 
histogram (a) (Figure 2) shows the variation of maximum 
Lyapunov exponents of air temperature. The highest 
maximum Lyapunov exponents was observed in July, 
followed by June while the lowest was in May.  Positive 
and negative Lyapunov exponents were observed in the 
air temperature time series. This indicates that there is 
transition for chaoticity (positive Lyapunov exponent) to 
periodicity (negative Lyapunov exponent) and thereafter 
to chaoticity (positive Lyapunov exponent). The chaotic 
regimes are evident in January, February, April, May, 
June, July, October and December, while periodic 
regimes are found in March, August and November. 

Chaos (positive Lyapunov exponent) describes the 
behaviour of a system when its behaviour is rare (never 
completely repeated) (Abbaszadeh, et al., 2020). 
The (approximate) period limit on accurate predictions of 
a chaotic system is a function of the largest Lyapunov 

exponent (Abarbanel, 1996):       
 

    
. Therefore, 

the maximum length of prediction was observed in May 
with the value of 12 minutes ahead, followed by  
December value of 5 minutes, while the minimum value 
was in July where the region experiences maximum 
rainfall. However, the negative Lyapunov exponents 
indicate that the dynamical evolution gives property 
repeated at certain regular and periodic intervals, but 
without exact repetition (Sivakumar, 2017). As a result of 
this, high length of predictions are exhibited in the 
months of March, August and November.  
The variation of Lyapunov exponents of relative humidity 
is displayed in the histogram (b) (Figure 2). The highest 
maximum Lyapunov exponents was observed in 
January, followed by March and while the lowest was in 
September.  Positive and negative Lyapunov exponents 
were observed in the relative humidity time series. This 
indicates that there is transition from chaoticity (positive 
Lyapunov exponent) to periodicity (negative Lyapunov 
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exponent) and thereafter to chaoticity (positive 
Lyapunov exponent). The chaotic regimes are evident in 
the months of January, February, March, May, June, 
July, September, November and December, while 
periodic regimes are found in April, August and October.  
For the chaotic regime, the maximum length of 
prediction was observed in September with the value of 
44 minutes ahead, followed by May which is 15 minutes 
ahead while March shows the minimum value of 2 
minutes ahead. In periodic regime, high length of 
predictions are exhibited in April, August and October.  
The distribution of Lyapunov exponents of dew point 
temperature time series is displayed in the histogram (c) 
(Figure 2). The month of January has the highest 
maximum Lyapunov exponents, followed by July, while 
the lowest was in May.  Positive and negative Lyapunov 
exponents were observed in the dew point temperature 
time series. This indicates that there exists periodicity 
inherent in the chaotic behaviour of dew point 
temperature time series causing transition from 
chaoticity (positive Lyapunov exponent) to periodicity 
(negative Lyapunov exponent) and thereafter to 
chaoticity (positive Lyapunov exponent). The chaotic 
regimes are observed in the months of January, 
February, March, April, May, June, July, October and 
December, while periodic regimes are found in August, 
September and November.  For the chaotic regime, the 
maximum length of prediction was observed in May with 
the value of 9 minutes ahead, followed by March with 
the value of 4 minutes, while the minimum value was in 
January. A high length of predictions are exhibited in a 
periodic regime in the months of August, September and 
November. The transitions found in these meteorological 
parameters correspond to dynamical transitions caused 
by different changes in climate, which are confirmed by 
other studies using a nonlinear measure for transition 
detection (Malik, et al., 2012).  
It is evident from the above discussion that the air 
temperature, relative humidity, and dew-point 
temperature fluctuations are affected by the local 
geographical topology and heavily influenced by the 
terrestrial climatic and atmospheric oscillations (Ray et 
al., 2019). The results, therefore, provide additional 
information about the climate transitions and for 
formulating weather prediction model. 
 
CONCLUSION 
Air temperature, relative humidity and dew point 
temperature data collected from Nsukka station by the 
Centre for Atmospheric Research (CAR), measured in 5 
minutes time steps have been analysed using False 
Nearest Neighbour (FNN) and Lyapunov exponent 
methods. These meteorological time series contain 8928 
data points from 1st January till 31

st
 December, 2012. 

The Average mutual information was used to determine 
a nonlinear correlation time for the meteorological 
parameters. The dynamic model needed to describe the 
evolution of the observed data has 4 - 5 dimensions for 
air temperature, 4 - 6 for relative humidity and 4 - 5 for 
dew point temperature. The Lyapunov exponents were 
computed using average mutual information and false 
nearest neighbour to characterise the underlying 
dynamics of these meteorological parameters. Positive 
and negative Lyapunov exponents were observed in the 
air temperature, relative humidity and dew point 
temperature time series. This indicates that there exists 

periodicity inherent in the chaotic behaviour of 
meteorological time series causing transition from 
chaoticity (positive Lyapunov exponent) to periodicity 
(negative Lyapunov exponent) and thereafter to 
chaoticity (positive Lyapunov exponent). The results, 
therefore, provide additional information about the 
climate transitions and also, for formulating a weather 
prediction model. 
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