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ABSTRACT 
 

This work aims to evaluate the individual stiffness of six plates’ boundary conditions with one free edge to obtain the 

specific mathematical models for predicting the postbuckling loads of the six plates’ boundary conditions under 

consideration. The shape profiles of each of the six plates were differentiated and substituted into the individual 

stiffness integrals to obtain the numerical values of the individual stiffness. The individual stiffness values were then 

substituted into the total bending and membrane stiffness expressions and evaluated. The resulting total and membrane 

stiffness expressions were thereafter substituted into the general postbuckling equation and evaluated to obtain 

specific mathematical models for the six plate types to predict the postbuckling loads of each plate. The newly 

formulated mathematical models were validated by carrying out numerical predictions of the postbuckling loads of 

each plate. The critical load obtained was compared with those in the literature and was found adequate. Additionally, 

the results showed a gradual increase in the strength of plate beyond the initial yield point which is in line with the 

behavior of plates. Based on these observations it was concluded that the newly formulated mathematical models for 

predicting the postbuckling strength of thin isotropic rectangular plates considered here were adequate and that the 

models will provide an easy means of analyzing thin plates for postbuckling loads. 
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INTRODUCTION 

 

Unlike columns, plates possess additional strength 

beyond their initial yield points.  The importance of 

plates in structural engineering practice such as 

aerospace and shipbuilding industries has over the 

years generated interest by many scholars to 

investigate the behavior of plates beyond the initial 

yield point. This is to harness the lightweight 

benefits of these types of structures. Earlier  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scholars who worked on this subject were Byklum 

and Amdahl (2002), Tanriöver and Senocak (2004), 

Elsheikh & Wang (2005), GhannadPour and Alinia 

(2006), Shufrin, Rabinovitch, and Eisenberger, (2008).  

Yoo and Lee (2011) examined the stress pattern for 

a square plate simply supported on all four edges 

and subjected to a uniform compressive force, Nx, 

in the postbuckling range. They used the assumed 

double trigonometric functions as deflected shape 

functions w. Paik, et. al. (2012) analyzed the elastic  
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large deflection behavior for metal plates under 

nonuniformly distributed lateral pressure with in-

plane loads. They solved the modified Von 

Karman’s fundamental nonlinear equations by 

assuming deflected function, w. Muradova and 

Stavroulakis (2012) investigated the postbuckling 

behavior of a rectangular Von Karman plate 

unilaterally resting on a nonlinear elastic foundation 

using the spectral method. Ibearugbulem et al. 

(2013), presented a technique for the inelastic 

buckling analysis of a thin rectangular isotropic 

plate under uniform in-plane compression in the 

longitudinal direction. They used Taylor’s series to 

approximate the displacement function for a CCCC 

plate to solve Stowell’s material nonlinearity 

governing differential equations. Eziefula et al. 

(2014) solved for the plastic buckling analysis of a 

CSSS thin rectangular isotropic plate under uniform 

in-plane compression in the longitudinal direction. 

Oghuaghabmba (2015) undertook a closed-form 

analysis of buckling and postbuckling loads of 

isotropic thin rectangular plates of various support 

conditions.  He used Euler direct integration 

method to solve von Karman’s large deflection 

equation and obtain the general postbuckling 

equation as Equation (1). He applied “work 

principle and minimum work error theory” to 

evaluate the buckling and postbuckling loads, as 

well as the critical loads.

   

He obtained the following general postbuckling equation,   . 
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where,    
  is stress function coefficient for a plate under post-buckling regime,                   

 

 
       is 

plate thickness,    is non-coefficient stress function of a slightly bent plate,     is non-coefficient stress 

function of a slightly bent plate. Elsami (2018) stated that postbuckling behavior of rectangular plate hinges 

mostly on von-Karman type nonlinear strain-displacement relations which is given here in as 
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Where the first term is the bending term and the second term is the membrane term.           are the 

middle surface deformations that are no longer zero as assumed in small deformation theory. Enem (2018) 

and Onodagu (2018) also worked on pure bending and free vibration of plates under large deformation using 

energy principles. Adah (2019), modified Iyengar’s equation by determining the numerical factor for 

modulus of rigidity in the inelastic range. He proposed two different equations for the post-buckling loads 

and stresses of the SSSS rectangular plate.  Ibearugbulem et al. (2020) formulated a general mathematical 

model for buckling and postbuckling analysis of isotropic thin plates. This they did based on the equation (2) 

and (3). They applied this general equation to a plate simply supported all round based on trigonometric 

shape profile. Just like many other scholars, much effort has been expanded on this simple case. None of the 

researchers has subjected this equation to thorough scrutiny with other boundary conditions especially those 

with one free edge to ascertain the suitability of this equation.   

Therefore, the present work based on the use of a polynomial shape profile is aimed at evaluating six plate 

boundary conditions with one free edge to obtain individual stiffness. And based on these stiffnesses the 

total bending and membrane stiffness will be formulated. Afterward, these will be substituted into the 

general postbuckling equation to formulate the specific postbuckling models to predict the postbuckling load 

of the six plates considered here. 
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METHODOLOGY  

The General Postbuckling Governing Equation 

Ibearugbulem et al. (2020) derived a general mathematical model for buckling and postbuckling analysis of 

isotropic thin plates as Equation (4) 
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Where the total bending stiffness,      and membrane stiffness,      are expressed as  
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And the individual stiffnessess are expressed as  
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Subscript b and m denote the bending and membrane. W is the deflected shape function, h is the shape 

profile, a is the plate dimension along the x-axis, and D is the flexural rigidity of the plate given as  
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Equation (4) can be rewritten as  
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The first term at the right-hand side is the critical load of the plate while the second term is the additional 

load that the plate can carry beyond the initial yield point before failure occurs (that is postbuckling term).  

 

Polynomial Deflected Shape Functions  

The primary aim of this work as stated earlier is to evaluate the individual stiffness based on the individual 

plate deflection shape functions of each plate boundary condition, to obtain the total bending and membrane 

stiffness. These will thereafter be substituted into the general postbuckling equation to obtain the specific 

mathematical models for the six plate boundary conditions under consideration.  Therefore, the polynomial 

deflected shape functions of the six plates considered here are presented in Table 1 as given by 

Ibearugbulem et al. (2014). 
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Table 1: Plate Type and Shape Parameter for Six Boundry Conditions 

 
PLATE TYPES SHAPE PROFILE (h) 

W = Ah;   (i.e h = R strip x Q strip) 
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Note: S means simply supported edge, C means Clamped Edged, and F means Free Edge 

 

Evaluation of stiffness 

Evaluation of SSFS plate stiffnessess at the point of Maximum Deflection (R = 0.5, Q = 1) are as 

follows: 

From Table 1, the polynomial deflected shape function for SSFS plate is given as  
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Therefore, differentiating the shape profile for SSFS plate and substituting into the Equations (7-13) and 

carrying out the evaluation as follows: 
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Integrating and substituting the values of R (= 0.5) and Q (= 1) at the point of maximum deflection, into 

Equations (19-24) yield the values of stiffness presented in roll 2 of Table 2 for the SSFS plate. Carrying out 

a similar evaluation for the remaining five boundary conditions yields the stiffness values presented in rolls 

3 to 7 of Table 2. 

Now substituting these values in Table 2, into Equation (5) and (6) yield equations for total bending and 

membrane stiffness expressions respectively as shown in Tables 3 and 4.  And to obtain the specific 

postbuckling mathematical models for predicting the postbuckling load of a plate based on the boundary 

conditions under consideration, the total bending and membrane expression in Tables 2 and 3 were 

substituted into the general postbuckling equation in Equation (4) or (14). The postbuckling mathematical 

models are presented in Table 5. 

 

RESULTS AND DISCUSSIONS 

The results obtained from the preceding section are presented in this section. The numerical values of the 

individual stiffness of the six plates’ types under consideration are presented in Table 2. 

 

Table 2: Stiffness Values for the Six Plate Edge Conditions 

 
Plate 

Edge 
Condition 

                              

SSFS 4.0257816 1.0331066 0.1874528 0.3681508 0.0407665 0.0271358 0.4073708 

SCFS 1.5096681 0.1823129 0.0287226 0.0127248 0.0013497 0.0007119 0.07188895 

CSFS 0.3284779 0.0919002 0.1286676 0.0027493 0.0000921 0.0001995 0.0332388 

CCFS 0.1231792 0.0162177 0.0197152 0.0000950 0.00000305 0.0000052 0.0058657 

SCFC 0.6709636 0.04051398 0.0060469 0.0010902 0.00007699 0.0005114 0.0159753 

CCFC 0.0547463 0.0036039 0.0041506 0.00000407 0.000000174 0.00000025 0.00130348 

 

After substituting the values in Table 2 into Equations (5) and (6), we obtain the expression for total bending 

and membrane stiffness as presented in Tables 3 and 4 respectively.
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Table 3:  Total Bending Stiffness     Equation for Six Plate Edge Condition 
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Table 4: Total Membrane Stiffness     Equation for Six Plate Edge Conditions 
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When the expressions in Tables 3 and 4 were substituted into Equation (4) or (14) which is the general 

postbuckling equation of thin plate we obtained the new formulated mathematical models for predicting the 

postbuckling load of thin plates as presented in Table 5.
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Table 5: Buckling and Post buckling Load and Stress Equations for the Six Plate Edge Conditions 
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To obtain the numerical value of the postbuckling load of each plate type considered here, the numerical 

values of w/t were substituted into the models in Table 5 to obtain the numerical values of postbuckling load 

coefficients of the plates as shown in Figure 1 and Table A1 for each plate type. While the stress parameter 

values are presented in Table A2 of the Appendix. 

The above mathematical models have not been formulated before now. The new models are simple and easy 

to apply in predicting the buckling and postbuckling load of the plate types considered. The models can be 

used for any dimension of plates and can even be more compact when dealing with square plates, in which 

case the aspect ratio   (=b/a) is equal to unity. The models above can also predict separately the additional 

carrying capacity of a plate beyond its initial yield point. This will easily tell how much additional strength 

the plate has at a particular deformation. When the deformation, w, is zero, that is, when the plate is still flat 

and has not bent, the postbuckling load will be zero, in which case the postbuckling term in equation (14) 

will be zero given rise to the critical load of the plate.  Figure 1 shows that the various plate considered have 

a gradual increase in strength beyond the initial yield. The situation that is a true behavior of plates unlike 

columns (Szilard 2004; Oguaghamba, 2015, O. Civalek, and A. Yavas, 2006; Katsikadelis, J. T. and 

Babouskos, N., 2007; Elsami, 2018). The chart shows that SCFC has the highest postbuckling strength while 

CSFS has less postbuckling strength for the six plate type with one free age. 

To ascertain the validity of these models, the numerical results obtained from the mathematical models were 

compared with those in literature as shown in Table 6.  Table 6 shows the comparison of the critical load 

obtained from these models with those of Ibearugubulem et al. (2014) who obtained theirs based on small 

deflection theory and also with those of Adah (2016). The results indicated a close agreement with those of 

Ibearugbulem et al. (2014) with a maximum percentage difference of 18.6% for SCFS while the remaining 

plate types' percentage differences are less the 15%. However, the results agreed with those of Adah earlier 

studies.  It is worth noting that, there is a dearth of literature concerning the postbuckling strength of these 

boundary conditions of the plate due to the difficulties of analyzing plates under large deflection. One can 

infer that if the critical values predicted from these models are adequate and the postbuckling behaviors of 

the plates agreed with those in literature, then the postbuckling values predicted from these models are also 

considered adequate. 
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Table 6: Comparison of Critical Load of this Study with Earlier Studies. 

 

BCs SSFS SCFS CSFS CCFS SCFC CCFC 

Present (   ) 15.415 26.472 19.283 29.891 47.451 50.714 

Ibearugbulem 

et al. (2014) 

13.295 21.547 16.945 27.553 45.331 48.376 

Adah, (2016) 15.415 26.472 19.283 29.891 47.451 50.714 

%Diff 1 13.7528381 18.60456 12.12467 7.821752 4.467767 4.610167 

%Diff 2 0 0 0 0 0 0 

 

 

CONCLUSION  

The present study has evaluated the shape profiles 

of six plates’ boundary conditions, that is, those 

with one free edge, to obtain the individual stiffness 

of each plate type.  Based on these stiffnesses the 

specific postbuckling mathematical models for the 

plates considered were formulated. These models 

were used to predict the postbuckling behavior of 

thin plates under consideration. This is an attempt 

in providing simple models for analysts and 

designers of plated structures and to expand the 

volume of knowledge in the area of large 

deformation of plates. The adequacy of these 

models was tested with those in literature and was 

found adequate. Based on this, it was concluded 

that the present postbuckling mathematical models 

can be used to predict the postbuckling strength of 

these plates considered here and the approach can 

easily be extended to other plates’ boundary 

conditions.   
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APPENDICES 
Table A1: Numerical Values of Buckling and Postbuckling Coefficient,  , of Rectangular plates for the Six Plates 

with one Free Edge.  
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w/t SSFS SCFS CSFS CCFS SCFC CCFC 

0 15.415 26.472 19.283 29.891 47.451 50.714 

0.25 16.047 27.694 19.849 30.571 48.934 51.251 

0.5 17.943 31.359 21.545 32.611 53.385 52.864 

0.75 21.103 37.469 24.373 36.011 60.803 55.552 

1 25.528 46.022 28.332 40.770 71.188 59.314 

1.25 31.216 57.019 33.422 46.890 84.540 64.152 

1.5 38.169 70.460 39.642 54.370 100.859 70.065 

1.75 46.386 86.344 46.994 63.209 120.146 77.053 

2 55.866 104.672 55.478 73.409 142.399 85.116 

2.25 66.611 125.445 65.092 84.968 167.620 94.254 

2.5 78.621 148.660 75.837 97.888 195.808 104.467 

2.75 91.894 174.320 87.713 112.167 226.963 115.755 

3 106.431 202.424 100.721 127.806 261.085 128.118 

3.25 122.233 232.971 114.859 144.805 298.174 141.556 

3.5 139.298 265.962 130.129 163.164 338.231 156.070 

3.75 157.628 301.397 146.529 182.883 381.254 171.658 

4 177.222 339.275 164.061 203.962 427.245 188.321 

4.25 198.080 379.597 182.724 226.401 476.203 206.060 

4.5 220.202 422.364 202.518 250.200 528.128 224.873 

4.75 243.588 467.573 223.443 275.359 583.020 244.762 

5 268.238 515.227 245.499 301.878 640.879 265.725 
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Table A2: Numerical Values of Stress Parameter 
     

 

   
 for Six Plate Edge Conditions 
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SSFS SCFS CSFS CCFS SCFC CCFC 

0 1.412 2.424 1.766 2.737 4.345 4.644 

0.25 1.469 2.536 1.818 2.800 4.481 4.693 

0.5 1.643 2.872 1.973 2.986 4.889 4.841 

0.75 1.933 3.431 2.232 3.298 5.568 5.087 

1 2.338 4.214 2.594 3.734 6.519 5.432 

1.25 2.859 5.222 3.061 4.294 7.742 5.875 

1.5 3.495 6.452 3.630 4.979 9.236 6.416 

1.75 4.248 7.907 4.304 5.788 11.002 7.056 

2 5.116 9.585 5.080 6.722 13.040 7.794 

2.25 6.100 11.488 5.961 7.781 15.350 8.631 

2.5 7.200 13.614 6.945 8.964 17.931 9.567 

2.75 8.415 15.963 8.032 10.272 20.784 10.600 

3 9.746 18.537 9.224 11.704 23.909 11.732 

3.25 11.193 21.334 10.518 13.261 27.305 12.963 

3.5 12.756 24.355 11.917 14.942 30.973 14.292 

3.75 14.435 27.600 13.418 16.748 34.913 15.720 

4 16.229 31.069 15.024 18.678 39.125 17.246 

4.25 18.139 34.762 16.733 20.733 43.608 18.870 

4.5 20.165 38.678 18.546 22.912 48.363 20.593 

4.75 22.307 42.818 20.462 25.216 53.390 22.414 

5 24.564 47.182 22.482 27.644 58.689 24.334 
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