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ABSTRACT 
 
This paper is an expository research to simplexes. The work focuses on how simplexes are created. It also 

looked at how complete graphs are treated as simplexes. We further present an important theorem and its proof. 
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Introduction 

The idea about simplex was introduced by William 

Kingdon Clifford. He penned on simplexes but named 

them “prime” “confines” in 1886. This concept was first 

described by Hendrick Schout in 1902 with the Latin 

superlative simplicssium “simplest” and same Latin 

adjective in normal form simplex “simple”. Henri 

Poincare, named them “generalized tetrahedra” in 

1900, when he wrote Analysis Situs [4]. 

Basically, simplexes are geometric objects such as 

point, edge, triangle, tetrahedron etc. For instance, a 

zero-simplex describes a single point, 1−simplex refers 

to two vertices which is connected by an edge, a 

2−simplex is three vertices which is connected 

pairwise by three edges with one face to produce a 

triangle, a 3−simplex refers to four vertices which is 

connected pairwise by edges, attached by four faces 

and are filled in to create a tetrahedron and so on [2]. 

These are shown in Figure 1. To generalize a pattern 

for n, an n−simplex can be formed using (n + 1) 

vertices. 
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When a collection of simplexes is nicely gummed to 

each other in a structured manner it produces a 

topological space called simplicial compl                                                                                                                                          

*Corresponding 

author:mohammedmari856@gmail.com 

 

Figure 1: Simplexes 

1.1 Basic Definitions 

1.1.1 Face of a Simplex 

A face of a simplex S is a sub-simplex P ⊆ S whose 

vertices are also vertices of S. A face P of S is said to 

be proper face if P 6= S [5]. Every simplex is a face of 

itself and all other sub-simplexes of that simplex are 

faces of the simplex. For instance, all the faces of a 

3−dimensional simplex are shown in Figure 2. 

 

Figure 2: Faces of a 3-simplex 

1.1.2 Facet of a Simplex 

If a simplex(S) has a dimension k, i.e., k-S, then its 

facets are (k − 1) simplexes or sub simplexes of S. For 

instance, a 2-S has 1-simplexes as its facets. Suppose 

a 2-simplex has (  ,    ,    ) vertices, then the edges 

(  ,   ), (  ,   ) and (  ,   ) are its facets. Therefore, 

the total number of facets of 2-simplex is 3 as shown in 

the table below

. 
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Dimension(k) of 

S 

Total Number of 

facets 

1 2 

2 3 

3 4 

k (k+1) 

 

From the table, it can be deduced that the total number 

of facets of a k-simplex for k > 0 is given by (k + 1), 

where k is the dimension of the simplex. 

1.1.3 Orientation of Simplexes 

Orientation of simplex refers to giving the simplex a 

direction [5]. This is done by ordering the 0-

dimensional faces of a simplex. The two possible ways 

one can orient a simplex is through clockwise and 

counterclockwise directions [3]. Considering a 

1−dimensional simplex in Figure 3. 

 

Figure 3: oriented edge 

The oriented edge is (  ,   ), taking into consideration 

the order.  

Consider the 2-simplex in Figure 4. Figure 4(a) 

represents the counterclockwise orientation. The same 

orientation is represented by three different ordered 

triples. That is, the oriented face = (  ,      )  =  (  , 

     )  = (  ,      ). 

Figure 4(b) also represents the clockwise orientation. 

The different ordered triples representing this 

orientation is the oriented face = (  ,      ) = (  ,      ) 

= (  ,      ). With the 3-simplex, twelve different 

ordered quadruples denote the same 3-simplex [3]. 

 

 
Figure 4: Oriented 2-simplex 

 

1.1.4 Complete Graph 

A complete graph refers to a graph consisting of 

vertices and edges such that any two vertices are 

joined by an edge [2]. Complete graphs on three 

vertices and four vertices are shown in Figure 5. 
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Figure 5: Complete graph 

1.2 Preliminaries 

This section deals with the definition of some important 

terminologies relating to this article. 

1.2.1 Definition 

Let u, v ∈ R, the line segment [u, v] between u and v is 

the set {[1 − λ] u + λ v, where λ ∈ [0,1]}. A set Y ⊆ R
n 
is 

said to be convex if ∀u, v ∈ Y, [u, v] is contained in Y, 

otherwise the is concave. For example, in Figure 6, Y 

is a convex set and X is a concave set. 

1.2.2 Definition 

If set Y ⊆ R
n
, then the convex hull denoted by Cx of Y 

is the intersection of all the convex sets contained in Y 

[6]. The convex hull is the set of all convex 

combinations of points in Y [6]. 

 

Figure 6: Convex set Y and concave set X 

Generally, if the set is convex, then the convex hull is 

the convex set, since the intersection of any family of 

convex sets is convex. But with concave set, the 

convex hull represents the smallest set that is 

contained in the line segment. 

1.2.3 Definition 

Given {m0, m1, ···, mk} to be a set of points in   , the 

set is said to be affinely independent or geometrically 

independent provided for any real scalar bi, the linear 

system     
             

And      
   = 0 is the trivial solution,    =     ··· =     = 

0. 

Generally, {   ,   ,···   }  are geometrically 

independent provided the vectors      ,       , 

       ,        are linearly independent. Any 

subset of geometrically independent points is also 

geometrically independent. 

1.2.4 Definition 

Let {   ,   ,···   }  be a set of vertices in   .  An 

n−simplex spanned by   ,   ,···    

denotes the set of all points P in    
such that P = 

   
 
      :   ∈ [0, n] for 𝑖 = 0, 1, ···, n and     

        

where the non-negative integer n denotes the 

dimension of the simplex.  

The real numbers   ,    ,···    which are uniquely 

determined by P are called barycentric coordinates of 

the point P [5],[1]. A convex combination is    
 
       

where       
                   

 A simplex is a convex hull by affinely independent 

points. Any n−simplex is produced by taking the  

102      Mari Mohammed, William Obeng-Denteh, Fred Asante-Mensa 

OSU



 

 

convex hull of the previous simplex and adding one 

more point, positioned in the space of dimension n 

such that it is affine-independent with the previous 

simplex. 

 

 

 

 

1.2.5 Definition 

A standard n− simplex (  ) is obtained by taken the 

convex hull of the basis vertices in     . The (n + 1) 

vertices of the     are the points    ∈      , where 

each vertex has zero coordinates except for its 𝑖th 

position which has 1 as its values. For example, 

   = (1, 0, 0, ··· ,0) 

 

 

 

 

 

 

    = (0, 1, 0, ··· ,0) 

 

    = (0, 0, 1, ··· ,0) 

. 

. 

. 

  = (0, 0, 0, ··· ,1)  

   lies in the hyperplane    +       +     ··· +     = 1.  

 

For instance, the standard 0−simplex (  ) describes 

the point (1) in one dimensional vector space R.    

describes an edge connecting the basis vertices (1, 0) 

and (0, 1) in   .    describes an equilateral triangle 

having the basis vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) 

in   space [5].    also describes a regular tetrahedron 

having (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 

1) basis vertices in   . 

   lies in the point    = 1,     lies in the line    +     = 

1,    lies in the plane     +    +      = 1 and    lies in 

the hyperplane    +    +     +    = 1 [5]. Figure 7 

represents   ,  ,   and    respectively in    space.  

 

Figure7:                  in    

 

2 Main Thrust 

This section deals with parts of a simplex and how 

simplexes can be created. It looks at how complete 

graphs are treated as simplexes. Also, an important 

theorem which cannot be an oversight when dealing 

with simplexes is being discussed. 

2.1 Interior and Boundary of Simplex 

A simplex has two distinct parts. Namely: interior and 

the boundary. 

2.1.1 Definition 

The interior of a simplex S denoted by Int(S) = S − 

b(S) of S, where b(S) denotes the boundary of the 

simplex [1]. The interior of S is made up of all the  
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vertices of S which are not members of any proper 

face of S. 

The boundary(b) of a k-simplex is the union of all its 

facets. The boundary of 0-dimensional simplex       

does not exist. 

For instance, the boundary of 1-simplex (  ,   )  is b(S) 

=    -      

and the boundary of a 2-simplex (  ,      )  is given by: 

        b (  ) = (  ,   ) + (  ,   ) + (  ,   ) 

                  = (  ,   ) - (  ,   ) + (  ,   ) 

                 =        
                ···,  ) 

Where the symbol hat over    means omit      

Similarly, the boundary a 3-simplex (  ) with vertices 

(  ,      ,   )  can be defined as: 

       b (  ) =        
                ···,  ) 

           = (  ,      )  - (  ,      )  + (  ,      )  - (  , 

     )   

 

2.2 Theorem 

 

The boundary square (  ) is equal zero. 

 Proof: 

 Due to [5] we begin as follows: 

 

 

Consider    (  ,      ,   ),  

                      B (  ) = (  ,      )  - (  ,      )  + (  , 

     )  - (  ,      )   

                      B (b (  )) = b ((  ,      )  - (  ,      )  + 

(  ,      )  - (  ,      )) 

                     = [(     )  - (     )  +  (     )] - [(     )  - 

(  ,   )  +  (  ,   )] + 

                         [(  ,   )  - (  ,   )  +  (  ,   )] - [(  ,   )  - 

(  ,   )  + (  ,   )] 

Showing that   (  ) = 0. 

 

In general,   (  )  =  0 ∀n ≥ 1, where n denotes the 

dimension of the simplex(S). 

 

2.3 Creating Simplexes 

As said earlier, a simplex begins with a point which is 

0−simplex, when two 0−simplexes are joined by an 

edge, a 1−simplex is formed. 

To create a two-simplex, it requires three vertices. 

Then each pair of vertices is connected with an edge 

to form a boundary of a triangle, which when filled in 

with a triangular face produces a 2−simplex. Figure 8 

shows the stepwise way to create a 2−simplex and a 

3−simplex. 

Also, to create a 3−simplex, it requires four vertices 

and each pair of vertices is joined by an edge to create 

a boundary of 3−simplex, which when filled in with 

2−dimensional triangular faces and the 3−dimensional 

tetrahedra solid produces a 3−simplex [2]. 

 

Figure 8: Creating simplexes 

2.4 Complete Graphs as Simplexes 

Complete graphs can be treated as simplexes. For 

example, in Figure 5, the complete graph in (a) 

becomes a 2-simplex when the inside is filled with a 2-

dimensional triangular face. Similarly (b) turns to a 3-

simplex when the 2-dimensional triangular faces and 

the 3-dimensional tetrahedra solid are filled [2]. This is 

represented in Figure 9. 
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The number of edges each vertex has is its degree. 

The degree of each vertex of a complete graph (  ) is 

determined by (m−1) vertices. Where m denotes the 

number of vertices of (  ). 

The sum of all the degrees in a complete graph (  ) is 

given by m (m − 1) and total number of edges in a 

complete graph is (  ) is  
        

 
. 

 

Figure 9: Complete graph as simplexes 

3 Conclusion 

The paper thoroughly discussed simplexes which are 

geometric elements such as point, edge, triangle, 

tetrahedron etc used to build a space called simplicial 

complex. It highlighted on how simplexes are created. 

An important theorem and its proof which cannot be 

overlooked when dealing with simplexes have been 

discussed. Lastly, complete graphs have also been 

shown to be simplexes. 
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